語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Lateral solid phase epitaxy of silicon and application to the fabrication of metal oxide semiconductor field-effect transistors.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Lateral solid phase epitaxy of silicon and application to the fabrication of metal oxide semiconductor field-effect transistors.
作者:
Greene, Brian Joseph.
面頁冊數:
146 p.
附註:
Advisers: James F. Gibbons; Judy L. Hoyt.
附註:
Source: Dissertation Abstracts International, Volume: 64-09, Section: B, page: 4519.
Contained By:
Dissertation Abstracts International64-09B.
標題:
Engineering, Electronics and Electrical.
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3104232
ISBN:
0496518003
Lateral solid phase epitaxy of silicon and application to the fabrication of metal oxide semiconductor field-effect transistors.
Greene, Brian Joseph.
Lateral solid phase epitaxy of silicon and application to the fabrication of metal oxide semiconductor field-effect transistors.
[electronic resource] - 146 p.
Advisers: James F. Gibbons; Judy L. Hoyt.
Thesis (Ph.D.)--Stanford University, 2003.
For sub-50 nm gate length MOSFET fabrication, an SOI thickness on the order of 10 nm will be required. One limitation of the LSPE process has been the need for thick films (0.5--2 mum) and/or heavy P doping (10 19--1020 cm-3) to increase the maximum achievable lateral growth distance, and therefore minimize the area on the substrate occupied by seed holes. This dissertation discusses the characterization and optimization of process conditions for large area LSPE silicon film growth, as well as efforts to adapt the traditional LSPE process to achieve ultra-thin SOI layers (Tsilicon ≤ 25 nm) while avoiding the use of heavy active doping layers. MOSFETs fabricated in these films that exhibit electron mobility comparable to the Universal Si MOS Mobility are described.
ISBN: 0496518003Subjects--Topical Terms:
226981
Engineering, Electronics and Electrical.
Lateral solid phase epitaxy of silicon and application to the fabrication of metal oxide semiconductor field-effect transistors.
LDR
:02833nmm _2200277 _450
001
162171
005
20051017073418.5
008
230606s2003 eng d
020
$a
0496518003
035
$a
00148672
035
$a
162171
040
$a
UnM
$c
UnM
100
0
$a
Greene, Brian Joseph.
$3
227288
245
1 0
$a
Lateral solid phase epitaxy of silicon and application to the fabrication of metal oxide semiconductor field-effect transistors.
$h
[electronic resource]
300
$a
146 p.
500
$a
Advisers: James F. Gibbons; Judy L. Hoyt.
500
$a
Source: Dissertation Abstracts International, Volume: 64-09, Section: B, page: 4519.
502
$a
Thesis (Ph.D.)--Stanford University, 2003.
520
#
$a
For sub-50 nm gate length MOSFET fabrication, an SOI thickness on the order of 10 nm will be required. One limitation of the LSPE process has been the need for thick films (0.5--2 mum) and/or heavy P doping (10 19--1020 cm-3) to increase the maximum achievable lateral growth distance, and therefore minimize the area on the substrate occupied by seed holes. This dissertation discusses the characterization and optimization of process conditions for large area LSPE silicon film growth, as well as efforts to adapt the traditional LSPE process to achieve ultra-thin SOI layers (Tsilicon ≤ 25 nm) while avoiding the use of heavy active doping layers. MOSFETs fabricated in these films that exhibit electron mobility comparable to the Universal Si MOS Mobility are described.
520
#
$a
Thin film silicon on insulator fabrication is an increasingly important technology requirement for improving performance in future generation devices and circuits. One process for SOI fabrication that has recently been generating renewed interest is Lateral Solid Phase Epitaxy (LSPE) of silicon over oxide. This process involves annealing amorphous silicon that has been deposited on oxide patterned Si wafers. The (001) Si substrate forms the crystalline seed for epitaxial growth, permitting the generation of Si films that are both single crystal, and oriented to the substrate. This method is particularly attractive to fabrication that requires low temperature processing, because the Si films are deposited in the amorphous phase at temperatures near 525°C, and crystallized at temperatures near 570°C. It is also attractive for applications requiring three dimensional stacking of active silicon device layers, due to the relatively low temperatures involved.
590
$a
School code: 0212.
650
# 0
$a
Engineering, Electronics and Electrical.
$3
226981
650
# 0
$a
Engineering, Materials Science.
$3
226940
710
0 #
$a
Stanford University.
$3
212607
773
0 #
$g
64-09B.
$t
Dissertation Abstracts International
790
$a
0212
790
1 0
$a
Gibbons, James F.,
$e
advisor
790
1 0
$a
Hoyt, Judy L.,
$e
advisor
791
$a
Ph.D.
792
$a
2003
856
4 0
$u
http://libsw.nuk.edu.tw/login?url=http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3104232
$z
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3104232
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000000664
電子館藏
1圖書
學位論文
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://libsw.nuk.edu.tw/login?url=http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3104232
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入