語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Contributions of voltage-gated sodium, calcium and potassium currents to the excitability of nociceptive sensory neurons
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Contributions of voltage-gated sodium, calcium and potassium currents to the excitability of nociceptive sensory neurons
作者:
Blair, Nathaniel Tyler.
面頁冊數:
229 p.
附註:
Adviser: Bruce P. Bean.
附註:
Source: Dissertation Abstracts International, Volume: 65-01, Section: B, page: 0093.
Contained By:
Dissertation Abstracts International65-01B.
標題:
Biology, Neuroscience.
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3117970
ISBN:
0496653946
Contributions of voltage-gated sodium, calcium and potassium currents to the excitability of nociceptive sensory neurons
Blair, Nathaniel Tyler.
Contributions of voltage-gated sodium, calcium and potassium currents to the excitability of nociceptive sensory neurons
[electronic resource] - 229 p.
Adviser: Bruce P. Bean.
Thesis (Ph.D.)--Harvard University, 2004.
In this thesis I have studied how the voltage-gated conductances expressed in nociceptors control various aspects of action potential generation during stimuli of varying duration and frequency. In Chapter 2 I present experiments using the action potential clamp method to measure the TTX-sensitive sodium, TTX-resistant sodium and calcium currents flowing during nociceptor action potentials, and focus on how inactivation shapes the contributions of TTX-sensitive and TTX-resistant sodium channels. The TTX-resistant sodium current contributes the majority of charge transferred during the action potential, and due to its slow and incomplete inactivation, contributes a significant fraction of the inward charge during the action potential shoulder. Chapter 3 describes the role of TTX-resistant sodium current slow inactivation in the adaptation of firing in nociceptive sensory neurons. Although TTX-resistant sodium channels recover from fast inactivation quite quickly, their rapid entry to slow inactivation prevents nociceptors from firing continuously throughout a depolarizing stimulus. Lastly, in Chapter 4 I describe the role of Kv3 and large conductance calcium-activated potassium channels in nociceptor action potential repolarization and in action potential broadening that occurs during repetitive stimulation. These studies will help in understanding the control of nociceptor excitability, and how changes in conductances might contribute to hyperalgesic states.
ISBN: 0496653946Subjects--Topical Terms:
226972
Biology, Neuroscience.
Contributions of voltage-gated sodium, calcium and potassium currents to the excitability of nociceptive sensory neurons
LDR
:02518nmm _2200277 _450
001
162337
005
20051017073436.5
008
230606s2004 eng d
020
$a
0496653946
035
$a
00148838
035
$a
162337
040
$a
UnM
$c
UnM
100
0
$a
Blair, Nathaniel Tyler.
$3
227468
245
1 0
$a
Contributions of voltage-gated sodium, calcium and potassium currents to the excitability of nociceptive sensory neurons
$h
[electronic resource]
300
$a
229 p.
500
$a
Adviser: Bruce P. Bean.
500
$a
Source: Dissertation Abstracts International, Volume: 65-01, Section: B, page: 0093.
502
$a
Thesis (Ph.D.)--Harvard University, 2004.
520
#
$a
In this thesis I have studied how the voltage-gated conductances expressed in nociceptors control various aspects of action potential generation during stimuli of varying duration and frequency. In Chapter 2 I present experiments using the action potential clamp method to measure the TTX-sensitive sodium, TTX-resistant sodium and calcium currents flowing during nociceptor action potentials, and focus on how inactivation shapes the contributions of TTX-sensitive and TTX-resistant sodium channels. The TTX-resistant sodium current contributes the majority of charge transferred during the action potential, and due to its slow and incomplete inactivation, contributes a significant fraction of the inward charge during the action potential shoulder. Chapter 3 describes the role of TTX-resistant sodium current slow inactivation in the adaptation of firing in nociceptive sensory neurons. Although TTX-resistant sodium channels recover from fast inactivation quite quickly, their rapid entry to slow inactivation prevents nociceptors from firing continuously throughout a depolarizing stimulus. Lastly, in Chapter 4 I describe the role of Kv3 and large conductance calcium-activated potassium channels in nociceptor action potential repolarization and in action potential broadening that occurs during repetitive stimulation. These studies will help in understanding the control of nociceptor excitability, and how changes in conductances might contribute to hyperalgesic states.
590
$a
School code: 0084.
650
# 0
$a
Biology, Neuroscience.
$3
226972
650
# 0
$a
Chemistry, Biochemistry.
$3
226900
690
$a
0317
690
$a
0487
710
0 #
$a
Harvard University.
$3
212445
773
0 #
$g
65-01B.
$t
Dissertation Abstracts International
790
$a
0084
790
1 0
$a
Bean, Bruce P.,
$e
advisor
791
$a
Ph.D.
792
$a
2004
856
4 0
$u
http://libsw.nuk.edu.tw/login?url=http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3117970
$z
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3117970
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000000830
電子館藏
1圖書
學位論文
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://libsw.nuk.edu.tw/login?url=http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3117970
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入