語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Financial decision-making under dist...
~
Kacperczyk, Marcin.
Financial decision-making under distribution uncertainty.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Financial decision-making under distribution uncertainty.
作者:
Kacperczyk, Marcin.
面頁冊數:
114 p.
附註:
Co-Chairs: Paul Damien; Tyler Shumway.
附註:
Source: Dissertation Abstracts International, Volume: 65-06, Section: A, page: 2304.
Contained By:
Dissertation Abstracts International65-06A.
標題:
Economics, Finance.
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3138188
ISBN:
0496853589
Financial decision-making under distribution uncertainty.
Kacperczyk, Marcin.
Financial decision-making under distribution uncertainty.
- 114 p.
Co-Chairs: Paul Damien; Tyler Shumway.
Thesis (Ph.D.)--University of Michigan, 2004.
Investors do not know the distribution of future returns, but much of the finance literature assumes they do. This dissertation presents a novel approach which allows one to incorporate uncertainty about the type of return distribution (distribution uncertainty) and applies it to three different financial problems: asset allocation, return predictability, and option pricing. To analyze decisions under distribution uncertainty, I develop a new family of Bayesian nonparametric and semiparametric models. In such models, the nonparametric component is modeled using the class of Dirichlet processes, while the parametric component is modeled using mean-variance regression. I show that, in such a semiparametric framework, the predictive distribution for any decision variable can be obtained using a scale mixture of uniform distributions approach. Importantly, such predictive distribution accounts for both parameter- and distribution uncertainty. I find that, above and beyond parameter uncertainty, distribution uncertainty is highly time-varying. Compared to investors facing a standard parameter uncertainty, investors considered in this dissertation can benefit from accounting for distribution uncertainty when deciding about optimal asset allocation, or predicting option prices. Distribution uncertainty, however, does not help to improve a well-known weak evidence on short-term predictability from the dividend yield.
ISBN: 0496853589Subjects--Topical Terms:
212585
Economics, Finance.
Financial decision-making under distribution uncertainty.
LDR
:02398nmm _2200265 _450
001
162737
005
20051017073518.5
008
090528s2004 eng d
020
$a
0496853589
035
$a
00149238
040
$a
UnM
$c
UnM
100
0
$a
Kacperczyk, Marcin.
$3
227881
245
1 0
$a
Financial decision-making under distribution uncertainty.
300
$a
114 p.
500
$a
Co-Chairs: Paul Damien; Tyler Shumway.
500
$a
Source: Dissertation Abstracts International, Volume: 65-06, Section: A, page: 2304.
502
$a
Thesis (Ph.D.)--University of Michigan, 2004.
520
#
$a
Investors do not know the distribution of future returns, but much of the finance literature assumes they do. This dissertation presents a novel approach which allows one to incorporate uncertainty about the type of return distribution (distribution uncertainty) and applies it to three different financial problems: asset allocation, return predictability, and option pricing. To analyze decisions under distribution uncertainty, I develop a new family of Bayesian nonparametric and semiparametric models. In such models, the nonparametric component is modeled using the class of Dirichlet processes, while the parametric component is modeled using mean-variance regression. I show that, in such a semiparametric framework, the predictive distribution for any decision variable can be obtained using a scale mixture of uniform distributions approach. Importantly, such predictive distribution accounts for both parameter- and distribution uncertainty. I find that, above and beyond parameter uncertainty, distribution uncertainty is highly time-varying. Compared to investors facing a standard parameter uncertainty, investors considered in this dissertation can benefit from accounting for distribution uncertainty when deciding about optimal asset allocation, or predicting option prices. Distribution uncertainty, however, does not help to improve a well-known weak evidence on short-term predictability from the dividend yield.
590
$a
School code: 0127.
650
# 0
$a
Economics, Finance.
$3
212585
690
$a
0508
710
0 #
$a
University of Michigan.
$3
212464
773
0 #
$g
65-06A.
$t
Dissertation Abstracts International
790
$a
0127
790
1 0
$a
Damien, Paul,
$e
advisor
790
1 0
$a
Shumway, Tyler,
$e
advisor
791
$a
Ph.D.
792
$a
2004
856
4 0
$u
http://libsw.nuk.edu.tw:81/login?url=http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3138188
$z
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3138188
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000001230
電子館藏
1圖書
學位論文
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://libsw.nuk.edu.tw:81/login?url=http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3138188
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入