語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Bifurcation theory of the transition...
~
Kolesnikov, Roman A.
Bifurcation theory of the transition to collisionless ion-temperature-gradient-driven plasma turbulence.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Bifurcation theory of the transition to collisionless ion-temperature-gradient-driven plasma turbulence.
作者:
Kolesnikov, Roman A.
面頁冊數:
164 p.
附註:
Adviser: John Krommes.
附註:
Source: Dissertation Abstracts International, Volume: 66-11, Section: B, page: 6043.
Contained By:
Dissertation Abstracts International66-11B.
標題:
Physics, Fluid and Plasma.
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3198043
ISBN:
9780542419881
Bifurcation theory of the transition to collisionless ion-temperature-gradient-driven plasma turbulence.
Kolesnikov, Roman A.
Bifurcation theory of the transition to collisionless ion-temperature-gradient-driven plasma turbulence.
- 164 p.
Adviser: John Krommes.
Thesis (Ph.D.)--Princeton University, 2006.
The collisionless limit of the transition to ion-temperature-gradient-driven plasma turbulence is studied using a dynamical systems approach. A model with ten degrees of freedom is used to identify the difference between the bifurcation patterns of collisional and collisionless systems. The importance of systematic bifurcation analysis for understanding the resulting difference in the dynamics of linearly damped and undamped systems is emphasized. A four-dimensional collisionless center manifold (CM) is studied and fixed points of its dynamics are identified and used to predict a "Dimits shift" of the threshold for turbulence due to the excitation of zonal flows. The exact value of that shift in terms of physical parameters is established for the model and the effects of higher-order truncations on the dynamics are studied. Possible effects of long-wavelength envelope modulations on the transition to turbulence scenarios in both collisional and collisionless cases are studied via application of multiple-scale analysis of the CM equations. The modulational effects on the dynamics are used to show that the system can undergo the transition to turbulence via the Benjamin-Feir mechanism. A collisionless version of the Ginzburg-Landau equation which captures both the Dimits shift phenomenon and the transition to turbulence above the upshift is derived.
ISBN: 9780542419881Subjects--Topical Terms:
227264
Physics, Fluid and Plasma.
Bifurcation theory of the transition to collisionless ion-temperature-gradient-driven plasma turbulence.
LDR
:02327nmm _2200253 _450
001
170955
005
20061228142331.5
008
090528s2006 eng d
020
$a
9780542419881
035
$a
00242985
040
$a
UnM
$c
UnM
100
0
$a
Kolesnikov, Roman A.
$3
244986
245
1 0
$a
Bifurcation theory of the transition to collisionless ion-temperature-gradient-driven plasma turbulence.
300
$a
164 p.
500
$a
Adviser: John Krommes.
500
$a
Source: Dissertation Abstracts International, Volume: 66-11, Section: B, page: 6043.
502
$a
Thesis (Ph.D.)--Princeton University, 2006.
520
#
$a
The collisionless limit of the transition to ion-temperature-gradient-driven plasma turbulence is studied using a dynamical systems approach. A model with ten degrees of freedom is used to identify the difference between the bifurcation patterns of collisional and collisionless systems. The importance of systematic bifurcation analysis for understanding the resulting difference in the dynamics of linearly damped and undamped systems is emphasized. A four-dimensional collisionless center manifold (CM) is studied and fixed points of its dynamics are identified and used to predict a "Dimits shift" of the threshold for turbulence due to the excitation of zonal flows. The exact value of that shift in terms of physical parameters is established for the model and the effects of higher-order truncations on the dynamics are studied. Possible effects of long-wavelength envelope modulations on the transition to turbulence scenarios in both collisional and collisionless cases are studied via application of multiple-scale analysis of the CM equations. The modulational effects on the dynamics are used to show that the system can undergo the transition to turbulence via the Benjamin-Feir mechanism. A collisionless version of the Ginzburg-Landau equation which captures both the Dimits shift phenomenon and the transition to turbulence above the upshift is derived.
590
$a
School code: 0181.
650
# 0
$a
Physics, Fluid and Plasma.
$3
227264
690
$a
0759
710
0 #
$a
Princeton University.
$3
212488
773
0 #
$g
66-11B.
$t
Dissertation Abstracts International
790
$a
0181
790
1 0
$a
Krommes, John,
$e
advisor
791
$a
Ph.D.
792
$a
2006
856
4 0
$u
http://libsw.nuk.edu.tw:81/login?url=http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3198043
$z
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3198043
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000002753
電子館藏
1圖書
學位論文
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://libsw.nuk.edu.tw:81/login?url=http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3198043
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入