語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
隨機向量之常態逼近 = Normal Approximation for...
~
國立高雄大學統計學研究所
隨機向量之常態逼近 = Normal Approximation for Random Vectors
紀錄類型:
書目-語言資料,印刷品 : 單行本
並列題名:
Normal Approximation for Random Vectors
作者:
莊婷婷,
其他團體作者:
國立高雄大學
出版地:
[高雄市]
出版者:
撰者;
出版年:
2009[民98]
面頁冊數:
21面圖、表 : 30公分;
標題:
Kolmogorov 測距
標題:
Kolmogorov distance.
電子資源:
http://handle.ncl.edu.tw/11296/ndltd/07891702086273512503
附註:
指導教授:李育嘉
附註:
參考書目:面
摘要註:
不同於在Stein著名論文\cite{S}中所提到的Stein方法,我們可考慮Steinequation的另一種形式\begin{equation*}F''(w)-wF'(w)=\tilde{h},\end{equation*}其中 $\tilde{h}:=h-\mathbb{E}h(Z)$且 $Z$為一隨機變數服從標準常態分佈。其對應的Stein identity便可表示成\[\mathbb{E}[F''(W)]=\mathbb{E}[WF'(W)],\]也可利用此等式來刻劃出標準常態分佈的隨機變數。而上述式子的解,我們也可將其表示為\begin{eqnarray*}F_{\tilde{h}}(w)=\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}\tilde{h}(e^{-t}w+\sqrt{1-e^{-2t}}y)e^{-y^2/2}dydt.\end{eqnarray*}這樣表示法的優點不但可簡化求解的過程,而且也可將其推廣至n維的情況,這是原來方法所無法處理的部分。舉例來說,n維的隨機向量其Steinequation可寫成\[\Delta F(w)-w\cdot \nabla F(w)=\tilde{h},\]而Stein identity可寫成\[\mathbb{E}[\Delta F(W)]=\mathbb{E}[W\cdot \nabla F(W)]\]那麼,我們將便可將其解表示成\[F_{\tilde{h}}(w)=\int_{0}^{\infty}\left(\frac{1}{\sqrt{2\pi}}\right)^n\int_{\mathbb{R}^n}\tilde{h}(e^{-t}w+\sqrt{1-e^{-2t}}y)e^{-|y|^2/2}dydt.\]在這篇論文中,我們將重新證明其主要引理(參見\cite{BC},引理2.3),並得到Wassersteindistance和Kolmogorov distance的上界估計。 Unlike the Stein's method introduced in his celebratedpaper\cite{S}, we consider the following alternative Stein'sequation\begin{equation}\label{se1a}F''(w)-wF'(w)=\tilde{h},\end{equation}where\tilde{h}:=-\mathbb{E}h(Z)and Z is a standard normaldistributed random variable. The corresponding Stein identity nowbecomes\[\mathbb{E}[F''(W)]=\mathbb{E}[WF'(W)],\]which also characterized the standard normal random variable aswell. The solution of (\ref{se1a}) is given by\begin{eqnarray}\label{sola}F_{\tilde{h}}(w)=\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}\tilde{h}(e^{-t}w+\sqrt{1-e^{-2t}}y)e^{-y^2/2}dydt.\end{eqnarray}The advantage of adapting equation (\ref{se1a}) is not only that thesolution (\ref{sola}) is itself very easy to handle but also thatthe solution is ready to be extended to vector-valued randomvariable. For example, for random vectors taking values in\mathbb{R}^n|, the Stein equation (\ref{se1a}) becomes\[\Delta F(w)-w\cdot \nabla F(w)=\tilde{h},\]the Stein identity becomes\[\mathbb{E}[\Delta F(W)]=\mathbb{E}[W\cdot \nabla F(W)],\] and the solution (\ref{sola}) now becomes\[F_{\tilde{h}}(w)=\int_{0}^{\infty}\left(\frac{1}{\sqrt{2\pi}}\right)^n\int_{\mathbb{R}^n}\tilde{h}(e^{-t}w+\sqrt{1-e^{-2t}}y)e^{-|y|^2/2}dydt.\] In this paper we reprove the key lemma(Lemma 2.3 in \cite{BC}) and then obtain the estimation of upperbound for Wasserstein distance and Kolmogorov distance.
隨機向量之常態逼近 = Normal Approximation for Random Vectors
莊, 婷婷
隨機向量之常態逼近
= Normal Approximation for Random Vectors / 莊婷婷撰 - [高雄市] : 撰者, 2009[民98]. - 21面 ; 圖、表 ; 30公分.
指導教授:李育嘉參考書目:面.
Kolmogorov 測距Kolmogorov distance.
隨機向量之常態逼近 = Normal Approximation for Random Vectors
LDR
:03789nam0a2200277 450
001
220252
005
20170214100909.0
009
220252
010
0
$b
精裝
010
0
$b
平裝
100
$a
20170214y2009 k y0chiy09 ea
101
1
$a
eng
$d
chi
$d
eng
102
$a
tw
105
$a
ak am 000yy
200
1
$a
隨機向量之常態逼近
$d
Normal Approximation for Random Vectors
$z
eng
$f
莊婷婷撰
210
$a
[高雄市]
$c
撰者
$d
2009[民98]
215
0
$a
21面
$c
圖、表
$d
30公分
300
$a
指導教授:李育嘉
300
$a
參考書目:面
328
$a
碩士論文--國立高雄大學統計學研究所
330
$a
不同於在Stein著名論文\cite{S}中所提到的Stein方法,我們可考慮Steinequation的另一種形式\begin{equation*}F''(w)-wF'(w)=\tilde{h},\end{equation*}其中 $\tilde{h}:=h-\mathbb{E}h(Z)$且 $Z$為一隨機變數服從標準常態分佈。其對應的Stein identity便可表示成\[\mathbb{E}[F''(W)]=\mathbb{E}[WF'(W)],\]也可利用此等式來刻劃出標準常態分佈的隨機變數。而上述式子的解,我們也可將其表示為\begin{eqnarray*}F_{\tilde{h}}(w)=\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}\tilde{h}(e^{-t}w+\sqrt{1-e^{-2t}}y)e^{-y^2/2}dydt.\end{eqnarray*}這樣表示法的優點不但可簡化求解的過程,而且也可將其推廣至n維的情況,這是原來方法所無法處理的部分。舉例來說,n維的隨機向量其Steinequation可寫成\[\Delta F(w)-w\cdot \nabla F(w)=\tilde{h},\]而Stein identity可寫成\[\mathbb{E}[\Delta F(W)]=\mathbb{E}[W\cdot \nabla F(W)]\]那麼,我們將便可將其解表示成\[F_{\tilde{h}}(w)=\int_{0}^{\infty}\left(\frac{1}{\sqrt{2\pi}}\right)^n\int_{\mathbb{R}^n}\tilde{h}(e^{-t}w+\sqrt{1-e^{-2t}}y)e^{-|y|^2/2}dydt.\]在這篇論文中,我們將重新證明其主要引理(參見\cite{BC},引理2.3),並得到Wassersteindistance和Kolmogorov distance的上界估計。 Unlike the Stein's method introduced in his celebratedpaper\cite{S}, we consider the following alternative Stein'sequation\begin{equation}\label{se1a}F''(w)-wF'(w)=\tilde{h},\end{equation}where\tilde{h}:=-\mathbb{E}h(Z)and Z is a standard normaldistributed random variable. The corresponding Stein identity nowbecomes\[\mathbb{E}[F''(W)]=\mathbb{E}[WF'(W)],\]which also characterized the standard normal random variable aswell. The solution of (\ref{se1a}) is given by\begin{eqnarray}\label{sola}F_{\tilde{h}}(w)=\int_{0}^{\infty}\frac{1}{\sqrt{2\pi}}\int_{\mathbb{R}}\tilde{h}(e^{-t}w+\sqrt{1-e^{-2t}}y)e^{-y^2/2}dydt.\end{eqnarray}The advantage of adapting equation (\ref{se1a}) is not only that thesolution (\ref{sola}) is itself very easy to handle but also thatthe solution is ready to be extended to vector-valued randomvariable. For example, for random vectors taking values in\mathbb{R}^n|, the Stein equation (\ref{se1a}) becomes\[\Delta F(w)-w\cdot \nabla F(w)=\tilde{h},\]the Stein identity becomes\[\mathbb{E}[\Delta F(W)]=\mathbb{E}[W\cdot \nabla F(W)],\] and the solution (\ref{sola}) now becomes\[F_{\tilde{h}}(w)=\int_{0}^{\infty}\left(\frac{1}{\sqrt{2\pi}}\right)^n\int_{\mathbb{R}^n}\tilde{h}(e^{-t}w+\sqrt{1-e^{-2t}}y)e^{-|y|^2/2}dydt.\] In this paper we reprove the key lemma(Lemma 2.3 in \cite{BC}) and then obtain the estimation of upperbound for Wasserstein distance and Kolmogorov distance.
510
1
$a
Normal Approximation for Random Vectors
$z
eng
610
0
$a
Kolmogorov 測距
$a
Stein 方程
$a
Stein 等式
$a
Stein方法
$a
Wasserstein 測距
$a
隨機向量
610
1
$a
Kolmogorov distance.
$a
Stein identity
$a
Stein's equation
$a
Stein's method
$a
Wasserstein distance
$a
random vectors
681
$a
008M/0019
$b
343201 4444
$v
2007年版
700
1
$a
莊
$b
婷婷
$4
撰
$3
353927
712
0 2
$a
國立高雄大學
$b
統計學研究所
$3
166081
801
0
$a
tw
$b
國立高雄大學
$c
20091020
$g
CCR
856
7
$2
http
$u
http://handle.ncl.edu.tw/11296/ndltd/07891702086273512503
筆 0 讀者評論
全部
博碩士論文區(二樓)
館藏
2 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
310001862526
博碩士論文區(二樓)
不外借資料
學位論文
TH 008M/0019 343201 4444 2009
一般使用(Normal)
在架
0
310001862518
博碩士論文區(二樓)
不外借資料
學位論文
TH 008M/0019 343201 4444 2009 c.2
一般使用(Normal)
在架
0
2 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://handle.ncl.edu.tw/11296/ndltd/07891702086273512503
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入