不同銦成分與厚度氮化銦鎵p-n單接面與氮化銦鎵/矽p-n雙接面太陽能電池...
國立高雄大學應用物理學系碩士班

 

  • 不同銦成分與厚度氮化銦鎵p-n單接面與氮化銦鎵/矽p-n雙接面太陽能電池的模擬分析 = Simulation and Analysis of InGaN p-n Single Junction and InGaN/Si p-n Double Junction Solar Cells with Indium Composition and Thickness Dependences
  • 紀錄類型: 書目-語言資料,印刷品 : 單行本
    並列題名: Simulation and Analysis of InGaN p-n Single Junction and InGaN/Si p-n Double Junction Solar Cells with Indium Composition and Thickness Dependences
    作者: 蘇郁儒,
    其他團體作者: 國立高雄大學
    出版地: [高雄市]
    出版者: 撰者;
    出版年: 民100
    面頁冊數: 150葉部份彩圖,表格 : 30公分;
    標題: 氮化銦鎵太陽能電池
    標題: InGaN Solar Cell
    電子資源: http://handle.ncl.edu.tw/11296/ndltd/27408651120500206427
    附註: 參考書目:葉104
    附註: 內容為英文
    摘要註: 由於氮化銦鎵的能隙變化可以從0.7~ 3.4 eV,幾乎涵蓋了整個太陽能光譜,相當適合作為太陽能電池的材料。為使太陽能電池效率與各種參數最佳化,我們進行氮化銦鎵單接面與氮化銦鎵/矽推疊太陽能電池之數值模擬,數值模擬對氮化銦鎵單接面與氮化銦鎵/矽堆疊太陽能電池的元件設計與製作非常重要。我們模擬改變不同銦含量和n型及p型氮化銦鎵的厚度,來分析幾個重要的太陽能電池元件的特性參數,如短路電流(Jsc)、開路電壓(Voc)、填滿因子(FF)、轉換效率(η)、與最大輸出功率(Pmax)。以p-n單接面的氮化銦鎵太陽能電池來說,所有的特性參數皆和銦含量比例有很大的關係。而在In0.6Ga0.4N時,可以得到最到的轉換效率約22%,因為In0.6Ga0.4N的能隙是1.42 eV,與目前擁有最大的轉換效率的太陽能電池材料GaAs幾乎一樣。氮化銦鎵的吸收系數很大,氮化銦鎵太陽能電池的總厚度應控制在500 nm以下,厚度超過500 nm,其吸收達到飽和,對轉換效率來說未必有幫助。以p-n雙接面的氮化銦鎵/矽推疊太陽能電池而言,最重要的是兩層之間的電流匹配問題,輸出的總電流是由兩層接面所產生較小電流者來決定,銦含量以及厚度的設定是設計雙層電池最重要的關鍵。而開路電壓的部分可以說就像是電池串聯一樣,是兩個接面開路電壓的總和。在填滿因子的圖中可以看到一些轉折點,這都是因為電流匹配的影響而產生。轉換效率一開始隨銦含量的增加而增加,但是當到達電流匹配的轉折點時,轉換效率會開始明顯的變化。在p型氮化銦鎵的厚度為100 nm時,轉換效率的最大值約37%,此值和單接面的相比約提高68%。而氮化銦鎵的厚度不可以超過500 nm,若氮化銦鎵的厚度太厚,幾乎所有的光都會被氮化銦鎵吸收,這樣會使矽接面沒有作用降低效率。數值模擬結果將可提供氮化銦鎵單接面與氮化銦鎵/矽推疊太陽能電池元件結構與製程最佳化條件。 InxGa1-xN alloys feature a bandgap ranging from 0.7eV to 3.4eV, covering almost the entire solar spectrum. To optimize the efficiency and the best parameters of solar cells, numerical simulations of InGaN single junction and InGaN/Si double junction solar cells are conducted. The simulation modelling is important and indispensable for designing and fabricating InGaN single junction and InGaN/Si tandem solar cells. We changed the In composition and the thickness of the n- and p-InGaN to determine the short circuit current density (Jsc), open circuit voltage (Voc), fill factor (FF), conversion efficiency (η), and power maximum (Pmax).First, for InGaN single junction solar cell, the Jsc, Voc, and FF have a strong dependence on the In composition. In composition is a critical parameter to determine Jsc, Voc, FF, and η of InGaN solar cells. In0.6Ga0.4N solar cell shows the maximum η ~ 22%. The band gap of In0.6Ga0.4N is 1.42 eV and is almost the same with GaAs. When the total layer thickness is greater than 500 nm, the absorption becomes saturated and the η increases smoothly. The simulation results are congruent with this trend. Second, the p- and n-junction thickness and In composition of InGaN junction are the key point to determine the characteristics of InGaN/Si double junction solar cell. The current matching should be considered in the InGaN/Si double junction solar cells. The smaller Jsc in each junction determines the total Jsc of InGaN/Si double junction solar cell. The total Voc is the sum of the Voc in each junction of InGaN/Si double junction solar cell. Because the current matching affects the Jsc, the curves of the FF have some turning points. The η increases with increasing In content and with dramatically drops with a turning point. With 100 nm p-type InGaN junction, the In0.6Ga0.4N/Si p-n double junction solar cell has the maximum η ~37%. The enhancement of the optimal η of In0.6Ga0.4N/Si p-n double junction solar cell is ~68% higher than that of In0.6Ga0.4N single junction solar cell. The total thickness of InGaN junction must be less than 500 nm, or the most light is absorbed in the InGaN junction and Si junction can not work. The simulation results could provide the clues for optimizing the device structures and process conditions of InGaN single junction and InGaN/Si tandem solar cells.
館藏
  • 2 筆 • 頁數 1 •
 
310002135435 博碩士論文區(二樓) 不外借資料 學位論文 TH 008M/0019 423203 4442.1 2011 一般使用(Normal) 在架 0
310002135443 博碩士論文區(二樓) 不外借資料 學位論文 TH 008M/0019 423203 4442.1 2011 c.2 一般使用(Normal) 在架 0
  • 2 筆 • 頁數 1 •
評論
Export
取書館別
 
 
變更密碼
登入