語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
EPMS方法對選擇權價格估計之漸近分佈 = Asymptotic Dis...
~
凃雅婷
EPMS方法對選擇權價格估計之漸近分佈 = Asymptotic Distribution of the EPMS Estimator for Option Pricing
紀錄類型:
書目-語言資料,印刷品 : 單行本
並列題名:
Asymptotic Distribution of the EPMS Estimator for Option Pricing
作者:
凃雅婷,
其他團體作者:
國立高雄大學
出版地:
[高雄市]
出版者:
撰者;
出版年:
2012[民101]
面頁冊數:
28面圖,表格 : 30公分;
標題:
P 測度下的平睹過程配適模擬法
標題:
empirical P-martingale simulation
電子資源:
http://handle.ncl.edu.tw/11296/ndltd/28217167562533389845
附註:
106年10月31日公開
附註:
參考書目:面23
摘要註:
本文推導出 Empirical P-martingale Simulation (EPMS) 方法對金融衍生性產品價格估計量的漸近常態分佈。當風險中立測度模型不容易得到時, EPMS是一個容易執行且有效率的方法。文中考慮在 Black-Scholes 和 GARCH 模型假設下,蒙地卡羅法, Empirical Martingale Simulation (EMS) 以及 EPMS 在計算歐式買權的有效性。模擬結果顯示本文所推導之漸近分布在樣本路徑達到500時,即可給出令人滿意的逼近。 The asymptotic normality of the empirical P-martingale simulation (EPMS)estimator for nancial derivative pricing is established in this study. The EPMS is an easily implemented and e cient method to compute derivative prices if a risk-neutral model is not convenient to be obtained. The e ciency of the Monte Carlo, empirical martingale simulation (EMS) and EPMS estimators for European call option pricing are compared under the Black-Scholes and GARCH models. Simulation results indicate that the asymptotic distribution serves as a persuasive approximation for samples consisting of as few as 500 simulation paths.
EPMS方法對選擇權價格估計之漸近分佈 = Asymptotic Distribution of the EPMS Estimator for Option Pricing
凃, 雅婷
EPMS方法對選擇權價格估計之漸近分佈
= Asymptotic Distribution of the EPMS Estimator for Option Pricing / 凃雅婷撰 - [高雄市] : 撰者, 2012[民101]. - 28面 ; 圖,表格 ; 30公分.
106年10月31日公開參考書目:面23.
P 測度下的平睹過程配適模擬法empirical P-martingale simulation
EPMS方法對選擇權價格估計之漸近分佈 = Asymptotic Distribution of the EPMS Estimator for Option Pricing
LDR
:02275nam0a2200289 450
001
346146
005
20171103092651.0
009
346146
010
0
$b
精裝
010
0
$b
平裝
100
$a
20121108d2012 k y0chiy50 e
101
1
$a
eng
$d
chi
$d
eng
102
$a
tw
105
$a
ak am 000yy
200
1
$a
EPMS方法對選擇權價格估計之漸近分佈
$d
Asymptotic Distribution of the EPMS Estimator for Option Pricing
$z
eng
$f
凃雅婷撰
210
$a
[高雄市]
$c
撰者
$d
2012[民101]
215
0
$a
28面
$c
圖,表格
$d
30公分
300
$a
106年10月31日公開
300
$a
參考書目:面23
314
$a
指導教授:黃士峰教授
328
$a
碩士論文--國立高雄大學統計學研究所
330
$a
本文推導出 Empirical P-martingale Simulation (EPMS) 方法對金融衍生性產品價格估計量的漸近常態分佈。當風險中立測度模型不容易得到時, EPMS是一個容易執行且有效率的方法。文中考慮在 Black-Scholes 和 GARCH 模型假設下,蒙地卡羅法, Empirical Martingale Simulation (EMS) 以及 EPMS 在計算歐式買權的有效性。模擬結果顯示本文所推導之漸近分布在樣本路徑達到500時,即可給出令人滿意的逼近。 The asymptotic normality of the empirical P-martingale simulation (EPMS)estimator for nancial derivative pricing is established in this study. The EPMS is an easily implemented and e cient method to compute derivative prices if a risk-neutral model is not convenient to be obtained. The e ciency of the Monte Carlo, empirical martingale simulation (EMS) and EPMS estimators for European call option pricing are compared under the Black-Scholes and GARCH models. Simulation results indicate that the asymptotic distribution serves as a persuasive approximation for samples consisting of as few as 500 simulation paths.
510
1
$a
Asymptotic Distribution of the EPMS Estimator for Option Pricing
$z
eng
610
0
$a
P 測度下的平睹過程配適模擬法
$a
蒙地卡羅模擬法
$a
選擇權定價
610
1
$a
empirical P-martingale simulation
$a
Monte Carlo simulation
$a
option pricing
681
$a
008M/0019
$b
343201 3874
$v
2007年版
700
1
$a
凃
$b
雅婷
$4
撰
$3
580027
712
0 2
$a
國立高雄大學
$b
統計學研究所
$3
166081
801
0
$a
tw
$b
NUK
$c
20121108
$g
CCR
856
7
$z
電子資源
$2
http
$u
http://handle.ncl.edu.tw/11296/ndltd/28217167562533389845
筆 0 讀者評論
多媒體
多媒體檔案
http://handle.ncl.edu.tw/11296/ndltd/28217167562533389845
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入