語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
總體經驗模態分解及其平行化處理應用在強健性語音辨識 = Robust S...
~
國立高雄大學資訊工程學系碩士班
總體經驗模態分解及其平行化處理應用在強健性語音辨識 = Robust Speech Recognition by Ensemble Empirical Mode Decomposition and its Parallel Processing
紀錄類型:
書目-語言資料,印刷品 : 單行本
並列題名:
Robust Speech Recognition by Ensemble Empirical Mode Decomposition and its Parallel Processing
作者:
朱嘉平,
其他團體作者:
國立高雄大學
出版地:
[高雄市]
出版者:
撰者;
出版年:
2012[民101]
面頁冊數:
75面圖,表格 : 30公分;
標題:
語音辨識
標題:
Speech Recognition
電子資源:
http://handle.ncl.edu.tw/11296/ndltd/77448005410503425631
附註:
106年10月31日公開
附註:
參考書目:面64-66
摘要註:
本論文主要目的是提升語音信號的抗雜訊能力以提升在具有環境雜訊下的語音辨識率。本論文應用總體經驗模態分解法(Ensemble Empirical Mode Decomposition, Ensemble EMD),將含雜訊的語音訊號分解成多組本質模態函式(Intrinsic Mode Functions, IMFs),並以實數型基因演算法找出最佳IMFs組合參數,再將分離出之IMFs依組合參數還原成語音,還原最理想的語音信號,讓環境噪音影響語音的辨識率降到最低。此外,針對總體經驗模態分解法所造成的運算速度的問題,本論文提出平行化運算來加速總體經驗模態分解法的運算速度,在多核心系統的架構下,結合OpenMP函式庫平行指令針對總體經驗模態分解法做平行化處理使運算速度提升。 The main purposes of this study were to enhance and improve the speech recognition rate of speech recognition systems subject to some environment noise. In our research, we used Ensemble Empirical Mode Decomposition (Ensemble EMD) to decompose the speech signals with noise to several IMFs, and then find the best weights for each IMF by using real-coded genetic algorithm. Thereafter, the speech signals were recovered by summing the weighted IMFs to reduce the effect of the noise. Since the Ensemble EMD will take much computation time, a parallel computation algorithm under multi-core structure is proposed to speed up the computation of Ensemble EMD. We used parallel instruction coding in the OpenMP library to implement our algorithm.
總體經驗模態分解及其平行化處理應用在強健性語音辨識 = Robust Speech Recognition by Ensemble Empirical Mode Decomposition and its Parallel Processing
朱, 嘉平
總體經驗模態分解及其平行化處理應用在強健性語音辨識
= Robust Speech Recognition by Ensemble Empirical Mode Decomposition and its Parallel Processing / 朱嘉平撰 - [高雄市] : 撰者, 2012[民101]. - 75面 ; 圖,表格 ; 30公分.
106年10月31日公開參考書目:面64-66.
語音辨識Speech Recognition
總體經驗模態分解及其平行化處理應用在強健性語音辨識 = Robust Speech Recognition by Ensemble Empirical Mode Decomposition and its Parallel Processing
LDR
:02875nam0a2200289 450
001
346187
005
20171103092726.0
009
346187
010
0
$b
精裝
010
0
$b
平裝
100
$a
20121108d2012 k y0chiy50 e
101
1
$a
chi
$d
chi
$d
eng
102
$a
tw
105
$a
ak am 000yy
200
1
$a
總體經驗模態分解及其平行化處理應用在強健性語音辨識
$d
Robust Speech Recognition by Ensemble Empirical Mode Decomposition and its Parallel Processing
$z
eng
$f
朱嘉平撰
210
$a
[高雄市]
$c
撰者
$d
2012[民101]
215
0
$a
75面
$c
圖,表格
$d
30公分
300
$a
106年10月31日公開
300
$a
參考書目:面64-66
314
$a
指導教授:潘欣泰博士
328
$a
碩士論文--國立高雄大學資訊工程學系碩士班
330
$a
本論文主要目的是提升語音信號的抗雜訊能力以提升在具有環境雜訊下的語音辨識率。本論文應用總體經驗模態分解法(Ensemble Empirical Mode Decomposition, Ensemble EMD),將含雜訊的語音訊號分解成多組本質模態函式(Intrinsic Mode Functions, IMFs),並以實數型基因演算法找出最佳IMFs組合參數,再將分離出之IMFs依組合參數還原成語音,還原最理想的語音信號,讓環境噪音影響語音的辨識率降到最低。此外,針對總體經驗模態分解法所造成的運算速度的問題,本論文提出平行化運算來加速總體經驗模態分解法的運算速度,在多核心系統的架構下,結合OpenMP函式庫平行指令針對總體經驗模態分解法做平行化處理使運算速度提升。 The main purposes of this study were to enhance and improve the speech recognition rate of speech recognition systems subject to some environment noise. In our research, we used Ensemble Empirical Mode Decomposition (Ensemble EMD) to decompose the speech signals with noise to several IMFs, and then find the best weights for each IMF by using real-coded genetic algorithm. Thereafter, the speech signals were recovered by summing the weighted IMFs to reduce the effect of the noise. Since the Ensemble EMD will take much computation time, a parallel computation algorithm under multi-core structure is proposed to speed up the computation of Ensemble EMD. We used parallel instruction coding in the OpenMP library to implement our algorithm.
510
1
$a
Robust Speech Recognition by Ensemble Empirical Mode Decomposition and its Parallel Processing
$z
eng
610
0
$a
語音辨識
$a
隱藏式馬可夫模型
$a
總體經驗模態分解法
$a
平行運算
$a
基因演算法
610
1
$a
Speech Recognition
$a
Hidden Markov Model
$a
Ensemble Empirical Mode Decomposition
$a
Parallel Computing
$a
Genetic Algorithms
681
$a
008M/0019
$b
464103 2541
$v
2007年版
700
1
$a
朱
$b
嘉平
$4
撰
$3
576401
712
0 2
$a
國立高雄大學
$b
資訊工程學系碩士班
$3
353878
801
0
$a
tw
$b
NUK
$c
20121108
$g
CCR
856
7
$z
電子資源
$2
http
$u
http://handle.ncl.edu.tw/11296/ndltd/77448005410503425631
筆 0 讀者評論
多媒體
多媒體檔案
http://handle.ncl.edu.tw/11296/ndltd/77448005410503425631
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入