語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
基於投影技術之模糊資料探勘方法之研究 = A Study on Proj...
~
國立高雄大學資訊工程學系碩士班
基於投影技術之模糊資料探勘方法之研究 = A Study on Projection-based Approaches for Fuzzy Data Mining
紀錄類型:
書目-語言資料,印刷品 : 單行本
並列題名:
A Study on Projection-based Approaches for Fuzzy Data Mining
作者:
林怡杏,
其他團體作者:
國立高雄大學
出版地:
[高雄市]
出版者:
撰者;
出版年:
2012[民101]
面頁冊數:
61面圖,表格 : 30公分;
標題:
資料探勘
標題:
Data mining
電子資源:
http://handle.ncl.edu.tw/11296/ndltd/98122902813504283205
附註:
104年10月31日公開
附註:
參考書目:面49-52
摘要註:
資料探勘相關技術目前被廣泛的應用在不同的商業和學術研究領域,傳統的量化關聯規則只考慮交易中的項目和數量區間的關係,而模糊化之後的項目探勘考慮的是項目的數量,使得這量化關聯規則能夠更為簡單且容易為人類所理解。目前之模糊探勘技術大多採用逐層資料庫掃描的方法來處理資料模糊化之後的項目探勘工作,對於執行結果所花費的時間較長。為了解決這個問題,本論文針對模糊頻繁項目集探勘的議題上提出了兩個方法,分別為逐層式資料縮減模糊探勘演算法 GDF和投影技術之模糊資料探勘演算法 PFA,這兩個方法採用不同的刪減策略可快速減少不會成為候選項目集的項目,以提高執行效率,且其找出的模糊頻繁項目集和原逐層式方法找出是一樣的。實驗結果顯示所提出的演算法在不同的資料庫上均能夠大幅度的改進所找出模糊頻繁項目集的效率。 Data mining techniques have been widely applied to various business and research issues. Since traditional quantitative rule mining only considers the occurrence and quantity interval relationships of items in transactions, fuzzy itemset mining was proposed to consider the quantity of items and make the quantitative rules that are simple and thus more comprehensible to decision makers. However, most existing fuzzy mining techniques adopt level-wise techniques to deal with the problem of fuzzy itemset mining, and thus the performance of the existing algorithms is not very good. To address this, in this thesis, we thus develop two efficient methods, GDF (Gradual Data-Reduction Fuzzy Mining Approach) and PFA (Projection-based Fuzzy Mining Approach), to speed up the execution efficiency of finding fuzzy frequent itemsets. In particular, the two approaches proposed, GDF and the PFA, adopt a data-reduction strategy consisting of pruning and merging processes, as well as two other strategies, indexing and filtering, to effectively reduce the number of unpromising candidate itemsets in comparison with the existing algorithms. The results of an experimental evaluation reveal that the proposed approaches can achieve up to a 50% improvement in efficiency over the traditional fuzzy mining algorithm on several datasets.
基於投影技術之模糊資料探勘方法之研究 = A Study on Projection-based Approaches for Fuzzy Data Mining
林, 怡杏
基於投影技術之模糊資料探勘方法之研究
= A Study on Projection-based Approaches for Fuzzy Data Mining / 林怡杏撰 - [高雄市] : 撰者, 2012[民101]. - 61面 ; 圖,表格 ; 30公分.
104年10月31日公開參考書目:面49-52.
資料探勘Data mining
基於投影技術之模糊資料探勘方法之研究 = A Study on Projection-based Approaches for Fuzzy Data Mining
LDR
:03561nam0a2200289 450
001
346194
005
20170214094810.0
009
346194
010
0
$b
精裝
010
0
$b
平裝
100
$a
20170214d2012 k y0chiy50 e
101
1
$a
eng
$d
chi
$d
eng
102
$a
tw
105
$a
ak am 000yy
200
1
$a
基於投影技術之模糊資料探勘方法之研究
$d
A Study on Projection-based Approaches for Fuzzy Data Mining
$z
eng
$f
林怡杏撰
210
$a
[高雄市]
$c
撰者
$d
2012[民101]
215
0
$a
61面
$c
圖,表格
$d
30公分
300
$a
104年10月31日公開
300
$a
參考書目:面49-52
314
$a
指導教授:洪宗貝博士,藍國誠博士
328
$a
碩士論文--國立高雄大學資訊工程學系碩士班
330
$a
資料探勘相關技術目前被廣泛的應用在不同的商業和學術研究領域,傳統的量化關聯規則只考慮交易中的項目和數量區間的關係,而模糊化之後的項目探勘考慮的是項目的數量,使得這量化關聯規則能夠更為簡單且容易為人類所理解。目前之模糊探勘技術大多採用逐層資料庫掃描的方法來處理資料模糊化之後的項目探勘工作,對於執行結果所花費的時間較長。為了解決這個問題,本論文針對模糊頻繁項目集探勘的議題上提出了兩個方法,分別為逐層式資料縮減模糊探勘演算法 GDF和投影技術之模糊資料探勘演算法 PFA,這兩個方法採用不同的刪減策略可快速減少不會成為候選項目集的項目,以提高執行效率,且其找出的模糊頻繁項目集和原逐層式方法找出是一樣的。實驗結果顯示所提出的演算法在不同的資料庫上均能夠大幅度的改進所找出模糊頻繁項目集的效率。 Data mining techniques have been widely applied to various business and research issues. Since traditional quantitative rule mining only considers the occurrence and quantity interval relationships of items in transactions, fuzzy itemset mining was proposed to consider the quantity of items and make the quantitative rules that are simple and thus more comprehensible to decision makers. However, most existing fuzzy mining techniques adopt level-wise techniques to deal with the problem of fuzzy itemset mining, and thus the performance of the existing algorithms is not very good. To address this, in this thesis, we thus develop two efficient methods, GDF (Gradual Data-Reduction Fuzzy Mining Approach) and PFA (Projection-based Fuzzy Mining Approach), to speed up the execution efficiency of finding fuzzy frequent itemsets. In particular, the two approaches proposed, GDF and the PFA, adopt a data-reduction strategy consisting of pruning and merging processes, as well as two other strategies, indexing and filtering, to effectively reduce the number of unpromising candidate itemsets in comparison with the existing algorithms. The results of an experimental evaluation reveal that the proposed approaches can achieve up to a 50% improvement in efficiency over the traditional fuzzy mining algorithm on several datasets.
510
1
$a
A Study on Projection-based Approaches for Fuzzy Data Mining
$z
eng
610
0
$a
資料探勘
$a
模糊資料探勘
$a
模糊頻繁項目集
$a
刪減策略
$a
投影技術
610
1
$a
Data mining
$a
fuzzy data mining
$a
fuzzy frequent itemsets
$a
pruning strategy
$a
projection-based techniques
681
$a
008M/0019
$b
464103 4494
$v
2007年版
700
1
$a
林
$b
怡杏
$4
撰
$3
576408
712
0 2
$a
國立高雄大學
$b
資訊工程學系碩士班
$3
353878
801
0
$a
tw
$b
NUK
$c
20121108
$g
CCR
856
7
$z
電子資源
$2
http
$u
http://handle.ncl.edu.tw/11296/ndltd/98122902813504283205
筆 0 讀者評論
多媒體
多媒體檔案
http://handle.ncl.edu.tw/11296/ndltd/98122902813504283205
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入