經驗模態分解法應用在情緒語音特徵值之計算 = Applications ...
國立高雄大學資訊工程學系碩士班

 

  • 經驗模態分解法應用在情緒語音特徵值之計算 = Applications of Empirical Mode Decomposition on the Computation of Emotional Speech Features
  • 紀錄類型: 書目-語言資料,印刷品 : 單行本
    並列題名: Applications of Empirical Mode Decomposition on the Computation of Emotional Speech Features
    作者: 李英瑋,
    其他團體作者: 國立高雄大學
    出版地: [高雄市]
    出版者: 撰者;
    出版年: 2012[民101]
    面頁冊數: 81面部份彩圖,表格 : 30公分;
    標題: 隱藏式馬可夫模型
    標題: Hidden Markov Model
    電子資源: http://handle.ncl.edu.tw/11296/ndltd/20667204182468877794
    附註: 參考書目:面68-73
    摘要註: 本論文結合經驗模態分解法(Empirical Mode Decomposition, EMD)與梅爾倒頻譜參數(Mel-Scale Frequency Cepstral Coefficients, MFCC)計算情緒語音特徵值,改善情緒語音之辨識率。EMD將情緒語音訊號分解成多個本質模態函數(Intrinsic Mode Function, IMF),並且以三種演化式計算(Evolutional Computation, EC)演算法分別為粒子群演算法(Particle Swarm Optimization, PSO)、基因演算法(Genetic Algorithm, GA)以及差分演算法(Differential Evolution, DE),計算出每個IMF之最佳權重值組合,以強化情緒語音訊號。另外,我們實驗使用隱藏式馬可夫模型(Hidden Markov Model, HMM)訓練以及辨識情緒語音特徵值。由實驗結果得知,本論文所提出之方法的確可以改善情緒語音之辨識率。 This thesis combines Empirical Mode Decomposition (EMD) with Mel-Scale Frequency Cepstral Coefficients (MFCC) to extract emotional speech features and improve emotional speech recognition rate. The EMD method is used to decompose emotional speech signals into several Intrinsic Mode Functions (IMFs). Three evolutionary algorithms: Particle Swarm Optimization (PSO), Differential Evolution (DE), and Genetic Algorithm (GA) are used to find the optimal weights of IMFs to compose an enhanced emotional speech signal. Thereafter, we can obtain more suitable emotional features by using MFCC. After extracting features, we fed these features into the Hidden Markov Model (HMM) for training and testing. Finally, experimental results will show that the emotional speech recognition rate can be improved by using the proposed method.
館藏
  • 2 筆 • 頁數 1 •
 
310002294950 博碩士論文區(二樓) 不外借資料 學位論文 TH 008M/0019 464103 4041 2012 一般使用(Normal) 在架 0
310002294968 博碩士論文區(二樓) 不外借資料 學位論文 TH 008M/0019 464103 4041 2012 c.2 一般使用(Normal) 在架 0
  • 2 筆 • 頁數 1 •
評論
Export
取書館別
 
 
變更密碼
登入