語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
社會搜尋 = Social Search:Applying Social...
~
呂筱萱
社會搜尋 = Social Search:Applying Social Networks Analysis for Web Search Techniques : 應用社會網絡分析方法於網頁搜尋技術之研究
紀錄類型:
書目-語言資料,印刷品 : 單行本
並列題名:
Social Search:Applying Social Networks Analysis for Web Search Techniques
副題名:
應用社會網絡分析方法於網頁搜尋技術之研究
作者:
呂筱萱,
其他團體作者:
國立高雄大學
出版地:
[高雄市]
出版者:
撰者;
出版年:
2012[民101]
面頁冊數:
59面圖,表格 : 30公分;
標題:
搜尋引擎
標題:
search engine
電子資源:
http://handle.ncl.edu.tw/11296/ndltd/11159247676641369443
附註:
參考書目:面51-53
附註:
103年12月16日公開
其他題名:
應用社會網絡分析方法於網頁搜尋技術之研究
摘要註:
近年來社群網站在人與人間的關係中扮演著重要的角色,隨著時間也讓人與人形成強連結的關係。對使用者來說,擁有強連結關係的朋友所提供的資訊,亦有高度興趣。目前網路上大多數搜尋平台是依據關鍵字和文章之相關程度,尚未加入文章擁有者與搜尋者間的關係,因此本研究將傳統搜尋引擎加入社會關 係,預期可改善搜尋品質並提升搜尋者之滿意度。 本研究將透過Facebook之塗鴉牆資料作為社會搜尋之依據,接著進行CKIP詞庫小組處理和TF-IDF計算,最後結合字頻和社會關係並進行結果排名,得到社會搜尋之結果。透過本研究之社會搜尋排名結果和以TF-IDF為基礎之搜尋排名結果比較後,證實朋友所提供之資訊確實會影響使用者之決策。 In recent years, social networking sites have becoming an important platform for users to establish the relationship between each other. As time goes by, the links between people will form the so-called “Strong Links”. For those users, information provided by the friends with strong link is considered as more interesting and useful. Currently, most of search engines are designed based on only measuring the similarity between keywords and articles. However, the social relations between the authors of articles and searcher have not been taken into account. Therefore, in order to improve the performance of search engines, we include the measurement of social relationship into traditional search engine. We expect to improve the search quality and to enhance the satisfaction of search. In this study, we will train the data from Facebook to calculate the social relationship and content. About the content, the data will be process by using CKIP and TFIDF. Finally, we proposed a social ranking value which combines traditional TF-IDF and the values of social relationship. The social ranking value will be used as the key to rank the search results. In this paper, we will also demonstrate a empirical example to explain the proposed methodology as well as the system interface. Comparing social search with TF-IDF search, we can conclude that the information provided by users’ friends are very important for users.
社會搜尋 = Social Search:Applying Social Networks Analysis for Web Search Techniques : 應用社會網絡分析方法於網頁搜尋技術之研究
呂, 筱萱
社會搜尋
= Social Search:Applying Social Networks Analysis for Web Search Techniques : 應用社會網絡分析方法於網頁搜尋技術之研究 / 呂筱萱撰 - [高雄市] : 撰者, 2012[民101]. - 59面 ; 圖,表格 ; 30公分.
參考書目:面51-53103年12月16日公開.
搜尋引擎search engine
社會搜尋 = Social Search:Applying Social Networks Analysis for Web Search Techniques : 應用社會網絡分析方法於網頁搜尋技術之研究
LDR
:03573nam0a2200301 450
001
346202
005
20230620160500.0
009
346202
010
0
$b
精裝
010
0
$b
平裝
100
$a
20121108d2012 k y0chiy05 e
101
1
$a
chi
$d
chi
$d
eng
102
$a
tw
105
$a
ak am 000yy
200
1
$a
社會搜尋
$e
應用社會網絡分析方法於網頁搜尋技術之研究
$d
Social Search:Applying Social Networks Analysis for Web Search Techniques
$z
eng
$f
呂筱萱撰
210
$a
[高雄市]
$c
撰者
$d
2012[民101]
215
0
$a
59面
$c
圖,表格
$d
30公分
300
$a
參考書目:面51-53
300
$a
103年12月16日公開
314
$a
指導教授:丁一賢博士
328
$a
碩士論文--國立高雄大學資訊管理學系碩士班
330
$a
近年來社群網站在人與人間的關係中扮演著重要的角色,隨著時間也讓人與人形成強連結的關係。對使用者來說,擁有強連結關係的朋友所提供的資訊,亦有高度興趣。目前網路上大多數搜尋平台是依據關鍵字和文章之相關程度,尚未加入文章擁有者與搜尋者間的關係,因此本研究將傳統搜尋引擎加入社會關 係,預期可改善搜尋品質並提升搜尋者之滿意度。 本研究將透過Facebook之塗鴉牆資料作為社會搜尋之依據,接著進行CKIP詞庫小組處理和TF-IDF計算,最後結合字頻和社會關係並進行結果排名,得到社會搜尋之結果。透過本研究之社會搜尋排名結果和以TF-IDF為基礎之搜尋排名結果比較後,證實朋友所提供之資訊確實會影響使用者之決策。 In recent years, social networking sites have becoming an important platform for users to establish the relationship between each other. As time goes by, the links between people will form the so-called “Strong Links”. For those users, information provided by the friends with strong link is considered as more interesting and useful. Currently, most of search engines are designed based on only measuring the similarity between keywords and articles. However, the social relations between the authors of articles and searcher have not been taken into account. Therefore, in order to improve the performance of search engines, we include the measurement of social relationship into traditional search engine. We expect to improve the search quality and to enhance the satisfaction of search. In this study, we will train the data from Facebook to calculate the social relationship and content. About the content, the data will be process by using CKIP and TFIDF. Finally, we proposed a social ranking value which combines traditional TF-IDF and the values of social relationship. The social ranking value will be used as the key to rank the search results. In this paper, we will also demonstrate a empirical example to explain the proposed methodology as well as the system interface. Comparing social search with TF-IDF search, we can conclude that the information provided by users’ friends are very important for users.
510
1
$a
Social Search
$e
Applying Social Networks Analysis for Web Search Techniques
$z
eng
517
1
$a
應用社會網絡分析方法於網頁搜尋技術之研究
$z
chi
610
0
$a
搜尋引擎
$a
社會網絡分析
$a
社群網站
$a
社會搜尋
610
1
$a
search engine
$a
social networks analysis (SNA)
$a
social networking sites
$a
social search
681
$a
008M/0019
$b
464105 6084
$v
2007年版
700
1
$a
呂
$b
筱萱
$4
撰
$3
576415
712
0 2
$a
國立高雄大學
$b
資訊管理學系碩士班
$3
353936
801
0
$a
tw
$b
NUK
$c
20121107
$g
CCR
856
7
$z
電子資源
$2
http
$u
http://handle.ncl.edu.tw/11296/ndltd/11159247676641369443
筆 0 讀者評論
多媒體
多媒體檔案
http://handle.ncl.edu.tw/11296/ndltd/11159247676641369443
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入