語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
磁性敏感線狀藥物載體之研究 = Magnetic-sensitive W...
~
國立高雄大學生物科技研究所
磁性敏感線狀藥物載體之研究 = Magnetic-sensitive Wire-liked Drug Carriers
紀錄類型:
書目-語言資料,印刷品 : 單行本
並列題名:
Magnetic-sensitive Wire-liked Drug Carriers
作者:
詹宗桂,
其他團體作者:
國立高雄大學
出版地:
[高雄市]
出版者:
撰者;
出版年:
2011[民100]
面頁冊數:
161面圖,表格 : 30公分;
標題:
磁性奈米粒子
標題:
magnetic nanoparticle
電子資源:
http://handle.ncl.edu.tw/11296/ndltd/09199703898439084446
摘要註:
為了製備可利用磁場控制的藥物載體,本研究先合成水溶性之磁性奈米粒子,與高分子系統結合形成磁性奈米複合材料,並利用微米圖案化技術建構表面具有模仿海葵觸手形狀之磁性凝膠,再含浸藥物並接受不同磁場的誘導觀察在磁場作用下的藥物釋放情形。合成之磁性Fe3O4、CoFe2O4奈米粒子以TEM、DLS、Zeta potential觀察,粒徑分別為10 nm、20nm,表面帶負電荷。以X光光電子能譜分析粒子之表面化學組成,並以X光繞射儀鑑定粒子之物理晶格結構;磁性分析則利用超導量子干涉儀量測,顯示Fe3O4奈米粒子為超順磁奈米粒子,而CoFe2O4奈米粒子則具有部分殘磁的鐵磁性;披覆檸檬酸之奈米粒子在10000 Gauss時磁化量分別為67.5 emu/g及33.1 emu/g。磁性凝膠的纖維性圖案製作方面,首先利用逐層組裝技術(Layer-by-Layer)製作奈米磁性纖維,作法上以水熱法合成之氧化鋅一維奈米線作為高分子自組裝的模板,奈米線寬58.4 nm、長3.28μm,將帶正電荷及帶負電荷聚電解質(polyelectrolyte)逐次組裝於模板上;以酸蝕刻奈米線後得到高深寬比之高分子管狀薄膜,進一步自組裝磁性奈米粒子、高分子於高分子薄膜上,製備磁性敏感之高深寬比中空管狀薄膜。磁性奈米纖維因磁性微弱而無法作即時誘導,且不易觀察。第二部分乃製備微米尺寸的磁性纖維做測試:首先以聚乙烯醇(polyvinyl alcohol)化學交聯之水凝膠(hydrogels)系統整合水溶性磁性流體(ferrofuild),以壓印技術在磁場輔助下分別將含20wt%、30 wt%奈米粒子之磁性流體堆積至彈性PDMS孔洞模具中。將15wt% PVA之預交聯溶液以灌模(casting)方式注入沉積粒子之彈性模具內,將模具圖案連同粒子轉印至水凝膠表面。初期以磁場誘導凝膠表面之結構隨磁場方向排列,並有拉伸的現象,比原始結構伸長至多2.5倍,證實凝膠上的海葵觸手結構具有磁場敏感之特性。隨後將有磁性微圖案之水凝膠分別浸泡水溶性藥物維他命B6及茶鹼,在磁場誘導下測試藥物釋放效果。與未經磁場誘導之水凝膠藥物釋放做比較,結果發現施加磁場可使藥物逐步釋放,改善藥物一次性地大量釋放之通病,可將此製程應用在長效型之藥物控制釋放載體。其中以水平旋轉磁場誘導模式可使磁性藥物載體之藥物累積釋放趨勢改變,磁場控制之藥物釋放累積速率為0.19 umol/min,無磁場之藥物釋放累積速率為1.18 umol /min。此外,施加垂直磁場4小時後可使包覆茶鹼之磁性藥物載體持續釋放時間超過8小時,可應用在逐步及批次藥物控制釋放。未來的應用除了可進一步控制磁場探討是否有其他的控制釋放模式,或利用此技術在不同的模具內沉積粒子,進一步做出其他磁性敏感微米或奈米結構,應用於藥物控制釋放。 In order to prepare a magnetically-controllable drug carrier, we fabricated a tentacled anemone-like magnetic gel that was constituted of water-dispersed magnetic nanoparticles and a polymer gel as a nanocomposite, and was formed by micro-patterning techniques. Afterward, the gel was tested to encapsulate some medicine and release it under different outer magnetic fields. There were two magnetic particles synthesized, Fe3O4 and CoFe2O4, and characterized by TEM, dynamic laser scattering (DLS) analysis, and Zeta potential measurement, showing 10 nm and 20 nm in average diameter for Fe3O4 and CoFe2O4 particles, respectively, and negative charges on both particle surfaces. X-ray photoelectron spectrameter (ESCA) was employed to measure chemical compositions of particle surfaces; X-ray diffraction meter (XRD) was used to analyze the lattice of crystalline; Superconducting Quantum Interference Device (SQUID) was applied to measured the magnetic property of particles, showing supermagneticity for Fe3O4 and little residual magnetism after magnetization for CoFe2O4. Also the saturated magnetization (1Tesla) were 67.5 emu/g for Fe3O4 and 33.1 emu/g for CoFe2O4.As for the preparation of magnetic gels, an assembling technique, layer-by-layer (LbL), was applied to deposit polymer layer on a substrate covered by vertically-aligned ZnO nanowires on it. The nanowires with 58 nm in width and about 3 um in length were synthesized by hydrothermal method. The positively-charged polyelectrolyte and negatively-charged polyelectrolyte were deposited on the nanowire surfaces by turns to form a thick polymer layer. After etching out the nanowires, hollow nanotubes were formed to assemble magnetic particles on the tube surface, producing a magnetic hollow tubes on a gel surfaces. However, there were only weak magnetism in the tubes were unable to be driven by outer magnets. On the other hand, the micro scaled fibrous structures on the magnetic gel was also prepared by using chemically-crosslinked polyvinyl alcohol (PVA) incorporated with ferro fluid and fabricated by the imprinting technique under outer magnetic field. We performed a certain amount of nanoparticles (20 wt% and 30 wt% , respectively) deposited in the micropores of PDMS mold, then casted 15 wt% of PVA and its crosslinker to replicate the PVA gel with fibrous structures on the surface and the nanoparticles accumulating on the top of fibers. Interestingly, the fibers were found to align along the outer magnetic field and elongated to 2.5 times longer than before, showing their magnetically-sensitive property. The hydrogels were immersed into Vitamin B6 and theophyline solution, respectively, to encapsulate medicine and released it under outer magnetic field or not. We found the two medicines were able to gradually release under the outer magnetic control without a burst release effect in ordinary drug carriers. The magnetic gels released Vitamin B6 at a cumulative rate of 0.19 umol/min and theophyline at 1.18 umol/min under a home-made rotational magnet with 2500 Gauss. Interestingly, those gels were able to maintain the slow releasing rate for more than 8 hr even through being applied under a constant magnet (4000 or 6000 Gauss) only for 4 hr, being available for stepwise and batch releasing designs. The gel can be applied under some driving magnetic fields, or using different porous molds to produce different shapes of micro/nano fiber-like surfaces in a future.
磁性敏感線狀藥物載體之研究 = Magnetic-sensitive Wire-liked Drug Carriers
詹, 宗桂
磁性敏感線狀藥物載體之研究
= Magnetic-sensitive Wire-liked Drug Carriers / 詹宗桂撰 - [高雄市] : 撰者, 2011[民100]. - 161面 ; 圖,表格 ; 30公分.
參考書目:面141-147.
磁性奈米粒子magnetic nanoparticle
磁性敏感線狀藥物載體之研究 = Magnetic-sensitive Wire-liked Drug Carriers
LDR
:07869nam0a2200277 450
001
374277
005
20170214100143.0
009
374277
010
0
$b
精裝
010
0
$b
平裝
100
$a
20170214d2011 k y0chiy05 e
101
1
$a
chi
$d
chi
$d
eng
102
$a
tw
105
$a
ak am 000yy
200
1
$a
磁性敏感線狀藥物載體之研究
$d
Magnetic-sensitive Wire-liked Drug Carriers
$z
eng
$f
詹宗桂撰
210
$a
[高雄市]
$c
撰者
$d
2011[民100]
215
0
$a
161面
$c
圖,表格
$d
30公分
314
$a
指導教授:楊文仁博士,鍾宜璋博士
320
$a
參考書目:面141-147
328
$a
碩士論文--國立高雄大學生物科技研究所
330
$a
為了製備可利用磁場控制的藥物載體,本研究先合成水溶性之磁性奈米粒子,與高分子系統結合形成磁性奈米複合材料,並利用微米圖案化技術建構表面具有模仿海葵觸手形狀之磁性凝膠,再含浸藥物並接受不同磁場的誘導觀察在磁場作用下的藥物釋放情形。合成之磁性Fe3O4、CoFe2O4奈米粒子以TEM、DLS、Zeta potential觀察,粒徑分別為10 nm、20nm,表面帶負電荷。以X光光電子能譜分析粒子之表面化學組成,並以X光繞射儀鑑定粒子之物理晶格結構;磁性分析則利用超導量子干涉儀量測,顯示Fe3O4奈米粒子為超順磁奈米粒子,而CoFe2O4奈米粒子則具有部分殘磁的鐵磁性;披覆檸檬酸之奈米粒子在10000 Gauss時磁化量分別為67.5 emu/g及33.1 emu/g。磁性凝膠的纖維性圖案製作方面,首先利用逐層組裝技術(Layer-by-Layer)製作奈米磁性纖維,作法上以水熱法合成之氧化鋅一維奈米線作為高分子自組裝的模板,奈米線寬58.4 nm、長3.28μm,將帶正電荷及帶負電荷聚電解質(polyelectrolyte)逐次組裝於模板上;以酸蝕刻奈米線後得到高深寬比之高分子管狀薄膜,進一步自組裝磁性奈米粒子、高分子於高分子薄膜上,製備磁性敏感之高深寬比中空管狀薄膜。磁性奈米纖維因磁性微弱而無法作即時誘導,且不易觀察。第二部分乃製備微米尺寸的磁性纖維做測試:首先以聚乙烯醇(polyvinyl alcohol)化學交聯之水凝膠(hydrogels)系統整合水溶性磁性流體(ferrofuild),以壓印技術在磁場輔助下分別將含20wt%、30 wt%奈米粒子之磁性流體堆積至彈性PDMS孔洞模具中。將15wt% PVA之預交聯溶液以灌模(casting)方式注入沉積粒子之彈性模具內,將模具圖案連同粒子轉印至水凝膠表面。初期以磁場誘導凝膠表面之結構隨磁場方向排列,並有拉伸的現象,比原始結構伸長至多2.5倍,證實凝膠上的海葵觸手結構具有磁場敏感之特性。隨後將有磁性微圖案之水凝膠分別浸泡水溶性藥物維他命B6及茶鹼,在磁場誘導下測試藥物釋放效果。與未經磁場誘導之水凝膠藥物釋放做比較,結果發現施加磁場可使藥物逐步釋放,改善藥物一次性地大量釋放之通病,可將此製程應用在長效型之藥物控制釋放載體。其中以水平旋轉磁場誘導模式可使磁性藥物載體之藥物累積釋放趨勢改變,磁場控制之藥物釋放累積速率為0.19 umol/min,無磁場之藥物釋放累積速率為1.18 umol /min。此外,施加垂直磁場4小時後可使包覆茶鹼之磁性藥物載體持續釋放時間超過8小時,可應用在逐步及批次藥物控制釋放。未來的應用除了可進一步控制磁場探討是否有其他的控制釋放模式,或利用此技術在不同的模具內沉積粒子,進一步做出其他磁性敏感微米或奈米結構,應用於藥物控制釋放。 In order to prepare a magnetically-controllable drug carrier, we fabricated a tentacled anemone-like magnetic gel that was constituted of water-dispersed magnetic nanoparticles and a polymer gel as a nanocomposite, and was formed by micro-patterning techniques. Afterward, the gel was tested to encapsulate some medicine and release it under different outer magnetic fields. There were two magnetic particles synthesized, Fe3O4 and CoFe2O4, and characterized by TEM, dynamic laser scattering (DLS) analysis, and Zeta potential measurement, showing 10 nm and 20 nm in average diameter for Fe3O4 and CoFe2O4 particles, respectively, and negative charges on both particle surfaces. X-ray photoelectron spectrameter (ESCA) was employed to measure chemical compositions of particle surfaces; X-ray diffraction meter (XRD) was used to analyze the lattice of crystalline; Superconducting Quantum Interference Device (SQUID) was applied to measured the magnetic property of particles, showing supermagneticity for Fe3O4 and little residual magnetism after magnetization for CoFe2O4. Also the saturated magnetization (1Tesla) were 67.5 emu/g for Fe3O4 and 33.1 emu/g for CoFe2O4.As for the preparation of magnetic gels, an assembling technique, layer-by-layer (LbL), was applied to deposit polymer layer on a substrate covered by vertically-aligned ZnO nanowires on it. The nanowires with 58 nm in width and about 3 um in length were synthesized by hydrothermal method. The positively-charged polyelectrolyte and negatively-charged polyelectrolyte were deposited on the nanowire surfaces by turns to form a thick polymer layer. After etching out the nanowires, hollow nanotubes were formed to assemble magnetic particles on the tube surface, producing a magnetic hollow tubes on a gel surfaces. However, there were only weak magnetism in the tubes were unable to be driven by outer magnets. On the other hand, the micro scaled fibrous structures on the magnetic gel was also prepared by using chemically-crosslinked polyvinyl alcohol (PVA) incorporated with ferro fluid and fabricated by the imprinting technique under outer magnetic field. We performed a certain amount of nanoparticles (20 wt% and 30 wt% , respectively) deposited in the micropores of PDMS mold, then casted 15 wt% of PVA and its crosslinker to replicate the PVA gel with fibrous structures on the surface and the nanoparticles accumulating on the top of fibers. Interestingly, the fibers were found to align along the outer magnetic field and elongated to 2.5 times longer than before, showing their magnetically-sensitive property. The hydrogels were immersed into Vitamin B6 and theophyline solution, respectively, to encapsulate medicine and released it under outer magnetic field or not. We found the two medicines were able to gradually release under the outer magnetic control without a burst release effect in ordinary drug carriers. The magnetic gels released Vitamin B6 at a cumulative rate of 0.19 umol/min and theophyline at 1.18 umol/min under a home-made rotational magnet with 2500 Gauss. Interestingly, those gels were able to maintain the slow releasing rate for more than 8 hr even through being applied under a constant magnet (4000 or 6000 Gauss) only for 4 hr, being available for stepwise and batch releasing designs. The gel can be applied under some driving magnetic fields, or using different porous molds to produce different shapes of micro/nano fiber-like surfaces in a future.
510
1
$a
Magnetic-sensitive Wire-liked Drug Carriers
$z
eng
610
0
$a
磁性奈米粒子
$a
磁性凝膠
$a
磁性敏感
$a
藥物制放
$a
磁性奈米粒子
$a
磁性凝膠
$a
磁性敏感
$a
藥物制放
$a
磁性奈米粒子
$a
磁性凝膠
$a
磁性敏感
$a
藥物制放
610
1
$a
magnetic nanoparticle
$a
magnetic gels
$a
magnetically-sensitive
$a
controlled release
$a
magnetic nanoparticle
$a
magnetic gels
$a
magnetically-sensitive
$a
controlled release
$a
magnetic nanoparticle
$a
magnetic gels
$a
magnetically-sensitive
$a
controlled release
681
$a
008M/0019
$b
420228 2734
$v
2007年版
700
1
$a
詹
$b
宗桂
$4
撰
$3
518707
712
0 2
$a
國立高雄大學
$b
生物科技研究所
$3
127806
801
0
$a
tw
$b
NUK
$c
20130521
$g
CCR
856
7
$z
電子資源
$2
http
$u
http://handle.ncl.edu.tw/11296/ndltd/09199703898439084446
筆 0 讀者評論
全部
博碩士論文區(二樓)
館藏
2 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
310002364738
博碩士論文區(二樓)
不外借資料
學位論文
TH 008M/0019 420228 2734 2011
一般使用(Normal)
在架
0
310002364746
博碩士論文區(二樓)
不外借資料
學位論文
TH 008M/0019 420228 2734 2011 c.2
一般使用(Normal)
在架
0
2 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://handle.ncl.edu.tw/11296/ndltd/09199703898439084446
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入