語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
磁熱敏感塊狀共聚水膠之製備 = Preparation of Therm...
~
國立高雄大學生物科技研究所碩士班
磁熱敏感塊狀共聚水膠之製備 = Preparation of Thermosensitive Magnetic Block-Copolymer Hydrogel
紀錄類型:
書目-語言資料,印刷品 : 單行本
並列題名:
Preparation of Thermosensitive Magnetic Block-Copolymer Hydrogel
作者:
張雅婷,
其他團體作者:
國立高雄大學
出版地:
高雄市
出版者:
國立高雄大學;
出版年:
2013[民102]
面頁冊數:
95葉部分彩圖 : 30公分;
標題:
磁性奈米粒子
標題:
Magnetic nanoparticles
電子資源:
https://hdl.handle.net/11296/qnya5p
附註:
107年11月1日公開
附註:
參考書目:葉89-95
摘要註:
本論文主要目的是利用熱敏感性高分子及磁性奈米粒子製作具有磁熱敏感塊狀共聚水膠。我們選用具有生物相容性之Pluronic F127為主要的熱敏感性材料,並利用具有生物降解性的己內酯(Caprolactone, CL)接枝在Pluronic F127高分子的兩端,形成多嵌段共聚物,以FT-IR、1H-NMR確認其結構,再由凝膠測試結果得知不同比例的己內酯所配製的Poly caprolactone-Pluronic-Poly caprolactone (CFC)共聚物高分子,能調控其相轉變溫度及性質。在相同高分子濃度下,PCL-Pluronic-PCL共聚物高分子的溫感區間和Pluronic F127高分子相比較下,相轉變區間明顯的縮小。磁性奈米粒子則使用具有超順磁特性之四氧化鈷二鐵奈米粒子,磁性鈷鐵氧化物奈米粒子以固態研磨法製備,由FTIR、STEM、XRD、SQUID之分析可知粒子的結晶、型態、飽和磁通量為78.7 emu/g、粒徑10.6 ± 4.0 nm。磁性粒子表面分別以兩種高分子聚丙烯酸(Poly acrylic acid, PAA)及溫敏塊狀共聚物進行接枝包覆,再將包覆好的鈷鐵氧化物和熱敏性高分子混合以製備出具有雙性塊狀共聚水膠。 PAA可在超音波震盪下塗佈於磁性粒子之表面,增加粒子在水中的分散性及防止粒子彼此之間聚集。但與熱敏塊狀共聚物混摻時,磁性奈米粒子在水膠中的分散性不佳,且粒子的含量明顯影響高分子水溶液的成膠性質。為了增加與熱敏高分子的相容性,我們以化學鍵結方式使熱敏共聚物直接接枝於四氧化鈷二鐵上,作法上首先利用多巴胺對Pluronic F127及PCL-Pluronic-PCL的末端進行改質,使高分子末端具有catechol基團,可以鍵結在磁性粒子表面使具有熱敏感性高分子鏈段,可穩定分散於同類的熱敏高分子水溶液中,減少因粒子沉澱影響成膠。由實驗結果得知,在20 wt%的F127高分子水溶液中,因為以Dopamine-F127-Dopamine 修飾後的CoFe2O4奈米粒子的添加,使得低臨界成膠溫度由原本的23℃降為20℃,而高臨界溶解溫度由57℃降為55℃。因為水膠中含有磁性粒子,會降低F127水溶液的相轉變溫度。調整高分子溶液與磁性粒子之固含量比例之關係,可以製備出磁熱敏感性水膠在低溫下可以注射於人體中,並於37℃會有原位成膠之性質,具有最適合人體的相變化溫感區間,再利用磁熱效應啟動相轉變而溶解,可以做為磁熱控制釋放的藥物載體。 We employed magnetic nanoparticles incorporated with thermosensitive polymers to prepare intelligent gel. The chosen thermosensitive polymer was biocompatible Pluronic F127, which could be attached with caprolactone as a thermosensitive block-copolymer under investigation for its structure by FT-IR and, 1H-NMR. The transition temperature could be controlled with added quantity of caprolactone. Based on the same solid content in polymer solutions, the phase transition range of PCL-Pluronic-PCL polymer is smaller than that of of Pluronic F127 polymer. As for the magnetic nanoparticles, we used superparamagnetic CoFe2O4 nanoparticles, prepared via a solid-state grinding method and characterized by FTIR, STEM, XRD, and SQUID. It was shown that nanoparticles had saturated flux of 78.7emu/g, and diameter of 10.6±4.0 nm. There were two polymers used to modify nanoparticle surfaces in order to improve nanoparticle dispersion: poly(acrylic acid) (PAA), and thermosensitive block copolymer, respectively. The modified nanoparticles were then blended with the thermosensitive block polymers in a certain ratios to fabricate intelligent gel. PAA was coated on the nanoparticle surfaces to enhance dispersity in water and prevent agglomeration. However, the PAA-coated nanoparticles was not dispersed in thick block copolymer aqueous solution, apparently leading to adverse effect on gelation. The other method was adopted to modify nanoparticle surfaces with the similar block-copolymer. Pluronic F127 and PCL-Pluronic-PCL were modified at the chain ends to introduce catechol groups, which could be then attached on magnetic nanoparticle surfaces. The similar thermosensitive polymer-coated nanoparticles could be dispersed into polymer sol system without precipitation. From experimental results, And then the polymer have OH group, can binding stably on the surface of magnetic nanoparticles. The lowest critical gelation temperature for 20wt% F127 solution changed from 23℃ to 20℃ with addition of CoFe2O4@Dopamine-F127-Dopamine; and the highest critical solution temperature of F127 solution also changed from 57℃ to 55℃. The transition temperature of F127 solution could be reduced due to nanoparticle addition. the magnetic thermosensitive hydrogel can be injected at a lower temperature in a sol state, and then the gel formation happens in situ at 37 ℃ suitable for storage in human body. The hydrogel can be dissolved again after initiation of hyperthermia process, showing a promising magnet-driven and thermosensitive drug carrier.
磁熱敏感塊狀共聚水膠之製備 = Preparation of Thermosensitive Magnetic Block-Copolymer Hydrogel
張, 雅婷
磁熱敏感塊狀共聚水膠之製備
= Preparation of Thermosensitive Magnetic Block-Copolymer Hydrogel / 張雅婷撰 - 高雄市 : 國立高雄大學, 2013[民102]. - 95葉 ; 部分彩圖 ; 30公分.
107年11月1日公開參考書目:葉89-95.
磁性奈米粒子Magnetic nanoparticles
磁熱敏感塊狀共聚水膠之製備 = Preparation of Thermosensitive Magnetic Block-Copolymer Hydrogel
LDR
:06186nam a2200277 450
001
389521
005
20190102102725.0
010
0
$b
精裝
010
0
$b
平裝
100
$a
20130926y2013 k y0chiy50 e
101
1
$a
chi
$d
chi
$d
eng
102
$a
tw
105
$a
ak am 000yy
200
1
$a
磁熱敏感塊狀共聚水膠之製備
$d
Preparation of Thermosensitive Magnetic Block-Copolymer Hydrogel
$z
eng
$f
張雅婷撰
210
$a
高雄市
$c
國立高雄大學
$d
2013[民102]
215
0
$a
95葉
$c
部分彩圖
$d
30公分
300
$a
107年11月1日公開
300
$a
參考書目:葉89-95
314
$a
指導教授:鍾宜璋博士
328
$a
碩士論文--國立高雄大學生物科技研究所碩士班
330
$a
本論文主要目的是利用熱敏感性高分子及磁性奈米粒子製作具有磁熱敏感塊狀共聚水膠。我們選用具有生物相容性之Pluronic F127為主要的熱敏感性材料,並利用具有生物降解性的己內酯(Caprolactone, CL)接枝在Pluronic F127高分子的兩端,形成多嵌段共聚物,以FT-IR、1H-NMR確認其結構,再由凝膠測試結果得知不同比例的己內酯所配製的Poly caprolactone-Pluronic-Poly caprolactone (CFC)共聚物高分子,能調控其相轉變溫度及性質。在相同高分子濃度下,PCL-Pluronic-PCL共聚物高分子的溫感區間和Pluronic F127高分子相比較下,相轉變區間明顯的縮小。磁性奈米粒子則使用具有超順磁特性之四氧化鈷二鐵奈米粒子,磁性鈷鐵氧化物奈米粒子以固態研磨法製備,由FTIR、STEM、XRD、SQUID之分析可知粒子的結晶、型態、飽和磁通量為78.7 emu/g、粒徑10.6 ± 4.0 nm。磁性粒子表面分別以兩種高分子聚丙烯酸(Poly acrylic acid, PAA)及溫敏塊狀共聚物進行接枝包覆,再將包覆好的鈷鐵氧化物和熱敏性高分子混合以製備出具有雙性塊狀共聚水膠。 PAA可在超音波震盪下塗佈於磁性粒子之表面,增加粒子在水中的分散性及防止粒子彼此之間聚集。但與熱敏塊狀共聚物混摻時,磁性奈米粒子在水膠中的分散性不佳,且粒子的含量明顯影響高分子水溶液的成膠性質。為了增加與熱敏高分子的相容性,我們以化學鍵結方式使熱敏共聚物直接接枝於四氧化鈷二鐵上,作法上首先利用多巴胺對Pluronic F127及PCL-Pluronic-PCL的末端進行改質,使高分子末端具有catechol基團,可以鍵結在磁性粒子表面使具有熱敏感性高分子鏈段,可穩定分散於同類的熱敏高分子水溶液中,減少因粒子沉澱影響成膠。由實驗結果得知,在20 wt%的F127高分子水溶液中,因為以Dopamine-F127-Dopamine 修飾後的CoFe2O4奈米粒子的添加,使得低臨界成膠溫度由原本的23℃降為20℃,而高臨界溶解溫度由57℃降為55℃。因為水膠中含有磁性粒子,會降低F127水溶液的相轉變溫度。調整高分子溶液與磁性粒子之固含量比例之關係,可以製備出磁熱敏感性水膠在低溫下可以注射於人體中,並於37℃會有原位成膠之性質,具有最適合人體的相變化溫感區間,再利用磁熱效應啟動相轉變而溶解,可以做為磁熱控制釋放的藥物載體。 We employed magnetic nanoparticles incorporated with thermosensitive polymers to prepare intelligent gel. The chosen thermosensitive polymer was biocompatible Pluronic F127, which could be attached with caprolactone as a thermosensitive block-copolymer under investigation for its structure by FT-IR and, 1H-NMR. The transition temperature could be controlled with added quantity of caprolactone. Based on the same solid content in polymer solutions, the phase transition range of PCL-Pluronic-PCL polymer is smaller than that of of Pluronic F127 polymer. As for the magnetic nanoparticles, we used superparamagnetic CoFe2O4 nanoparticles, prepared via a solid-state grinding method and characterized by FTIR, STEM, XRD, and SQUID. It was shown that nanoparticles had saturated flux of 78.7emu/g, and diameter of 10.6±4.0 nm. There were two polymers used to modify nanoparticle surfaces in order to improve nanoparticle dispersion: poly(acrylic acid) (PAA), and thermosensitive block copolymer, respectively. The modified nanoparticles were then blended with the thermosensitive block polymers in a certain ratios to fabricate intelligent gel. PAA was coated on the nanoparticle surfaces to enhance dispersity in water and prevent agglomeration. However, the PAA-coated nanoparticles was not dispersed in thick block copolymer aqueous solution, apparently leading to adverse effect on gelation. The other method was adopted to modify nanoparticle surfaces with the similar block-copolymer. Pluronic F127 and PCL-Pluronic-PCL were modified at the chain ends to introduce catechol groups, which could be then attached on magnetic nanoparticle surfaces. The similar thermosensitive polymer-coated nanoparticles could be dispersed into polymer sol system without precipitation. From experimental results, And then the polymer have OH group, can binding stably on the surface of magnetic nanoparticles. The lowest critical gelation temperature for 20wt% F127 solution changed from 23℃ to 20℃ with addition of CoFe2O4@Dopamine-F127-Dopamine; and the highest critical solution temperature of F127 solution also changed from 57℃ to 55℃. The transition temperature of F127 solution could be reduced due to nanoparticle addition. the magnetic thermosensitive hydrogel can be injected at a lower temperature in a sol state, and then the gel formation happens in situ at 37 ℃ suitable for storage in human body. The hydrogel can be dissolved again after initiation of hyperthermia process, showing a promising magnet-driven and thermosensitive drug carrier.
510
1
$a
Preparation of Thermosensitive Magnetic Block-Copolymer Hydrogel
$z
eng
610
# 0
$a
磁性奈米粒子
$a
熱敏感高分子
$a
智慧型水膠
610
# 1
$a
Magnetic nanoparticles
$a
Thermosensitive polymer
$a
Smart hydrogel
681
$a
008M/0019
$b
420228 1174
$v
2007年版
700
1
$a
張
$b
雅婷
$4
撰
$3
614402
712
0 2
$a
國立高雄大學
$b
生物科技研究所碩士班
$3
593057
801
0
$a
tw
$b
NUK
$c
20181121
$g
CCR
856
7 #
$u
https://hdl.handle.net/11296/qnya5p
$z
電子資源
$2
http
筆 0 讀者評論
全部
博碩士論文區(二樓)
館藏
2 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
310002827874
博碩士論文區(二樓)
不外借資料
學位論文
TH 008M/0019 420228 1174 2013
一般使用(Normal)
在架
0
310002827882
博碩士論文區(二樓)
不外借資料
學位論文
TH 008M/0019 420228 1174 2013 c.2
一般使用(Normal)
在架
0
2 筆 • 頁數 1 •
1
多媒體
多媒體檔案
https://hdl.handle.net/11296/qnya5p
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入