利用量子效率與時間解析電激螢光研究鎵極性、氮極性與半極性氮化銦鎵/氮化鎵...
國立高雄大學應用物理學系碩士班

 

  • 利用量子效率與時間解析電激螢光研究鎵極性、氮極性與半極性氮化銦鎵/氮化鎵多重量子井發光二極體之載子傳輸行為 = Carrier transport study of Ga-polar, N-polar, and semipolar InGaN/GaN multiple quantum well LEDs by using quantum efficiency and time-resolved electroluminescence measurements
  • 紀錄類型: 書目-語言資料,印刷品 : 單行本
    並列題名: Carrier transport study of Ga-polar, N-polar, and semipolar InGaN/GaN multiple quantum well LEDs by using quantum efficiency and time-resolved electroluminescence measurements
    作者: 廖柏勛,
    其他團體作者: 國立高雄大學
    出版地: [高雄市]
    出版者: 撰者;
    出版年: 2013[民102]
    面頁冊數: 93面圖,表格 : 30公分;
    標題: 時間解析電激螢光
    標題: Time-resolved Electroluminescence
    電子資源: http://handle.ncl.edu.tw/11296/ndltd/53524736057536072849
    附註: 參考書目:面55-56
    附註: 102年10月31日公開
    其他題名: 利用量子效率與時間解析電激螢光研究鎵極性氮極性與半極性氮化銦鎵氮化鎵多重量子井發光二極體之載子傳輸行為
    摘要註: 首先,我們呈現氮極性與半極性(11-22)氮化鎵磊晶膜的掃描電子顯微鏡(SEM)、陰極發光(CL)、原子力顯微鏡(AFM)、光激螢光(PL)以及拉曼(Raman)實驗結果。由於半極性(11-22)氮化鎵樣品的表面是屬網狀結構,半極性(11-22)氮化鎵樣品的表面粗糙度大於氮極性氮化鎵樣品,所觀察到的線條條紋與粗糙度分別象徵為堆疊差排(SF)與線錯位(TDs)。換言之,氮極性氮化鎵樣品的缺陷密度高於半極性(11-22)氮化鎵樣品。陰極發光強度與原子力顯微鏡量測的結果一致,半極性(11-22)氮化鎵樣品有較高的陰極發光強度與較好的晶體品質。對氮極性氮化鎵樣品而言,溫度從10升到300 K,不帶電受體(A0BE)複合的發光強度比施體-受體對(DAP)複合的發光強度衰減更快。其次,利用電激螢光(EL)、電流-電壓(I-V)、量子效率(QE)、與時間解析電激螢光(TREL)研究鎵極性、氮極性、與半極性氮化銦鎵/氮化鎵多重量子井發光二極體之載子傳輸行為。鎵極性@藍寶石發光二極體的電激螢光(EL)強度優於半極性(11-22)@r-藍寶石發光二極體;半極性(11-22)@r-藍寶石發光二極體的電激螢光強度優於氮極性@藍寶石發光二極體;氮極性@藍寶石發光二極體的電激螢光強度優於半極性(11-22)@m-藍寶石發光二極體。鎵極性@藍寶石發光二極體的半高全寬(FWHM)小於氮極性@藍寶石發光二極體;半極性(11-22)@r-藍寶石發光二極體的半高全寬小於半極性(11-22)@m-藍寶石發光二極體。時間解析電激螢光的實驗結果顯示,氮極性@藍寶石發光二極體的反應時間比鎵極性@藍寶石發光二極體短,這表示氮極性@藍寶石發光二極體具有好的載子注入效率。隨著外加電壓增加,衰減時間減少。因為較大偏壓會減弱量子侷限史塔克效應(QCSE),衰減時間降低可以解釋為電子和電洞波函數的重疊積分增加。由於鎵極性@藍寶石發光二極體的內部壓電場方向與氮極性@藍寶石發光二極體相反,導致鎵極性@藍寶石發光二極體衰減時間隨外加偏壓的趨勢與氮極性@藍寶石發光二極體隨外加偏壓的趨勢相反。透過量子效率與時間解析電激螢光測量結果,可以決定出輻射衰減率與非輻射衰減率。鎵極性@藍寶石發光二極體的輻射衰減率比其它三個發光二極體快;半極性(11-22)@m-藍寶石發光二極體的非輻射衰減率比其它三個發光二極體快。 First, we have shown the experimental results of SEM, CL, AFM, PL, and Raman measurements of the N-polar GaN and semipolar (11-22) GaN epilayers. The surface roughness of the semipolar (11-22) GaN sample is larger than that of the N-polar GaN sample. The higher surface roughness of the semipolar (11-22) GaN was attributed the meshed structure on the surface. The obvious striation feature and roughness were characterized by of SF and TDs. In other words, the defect density of the N-polar GaN sample is higher than that of the semipolar (11-22) GaN sample. The result of CL intensity is consistent of that of the AFM measurement. The semipolar (11-22) GaN sample reveals the higher CL intensity and the better crystal quality. For the N-polar GaN sample, the intensity of the neutral acceptors (A0BE) recombination decays quickly than that of the donor-acceptor pair (DAP) recombination from 10 to 300 K.Second, the carrier transport behavior of Ga-polar, N-polar, and semipolar InGaN/GaN MQW LEDs are studied by using electroluminescence (EL), current-voltage (I-V), quantum efficiency (QE), and time-resolved electroluminescence (TREL) measurements. The EL intensity of Ga-polar@sapphire LED is better than that of the semipolar@r-sapphire LED;the EL intensity of the semipolar@r-sapphire LED is better than that of the N-polar@sapphire LED;the EL intensity of the N-polar@sapphire LED is better than that of the semipolar@m-sapphire LED. The FWHM (full width at half maximum) of the Ga-polar@sapphire LED is smaller than that of N-polar@sapphire LED;The FWHM of the semipolar@r-sapphire LED is smaller than that of semipolar@m-sapphire LED.From the TREL results, the shorter response time of N-polar@sapphire LED than that of Ga-polar@sapphire LED suggests a better injection efficiency of N-polar@sapphire LED. As the applied voltage increases, the decay time decreases. Because of the slightly weaker quantum confined Stark effect (QCSE) at a larger applied voltage, the decreasing decay time can be explained with the slightly increasing overlap integral of electron and hole wavefunctions.Due to the opposite directions of the internal piezoelectric field of Ga-polar@sapphire and N-polar@sapphire LEDs, the trend of the decay time for the Ga-polar@sapphire LED is opposite with that of N-polar@sapphire LED. From the results of quantum efficiency and TREL measurements, the radiative decay rate and nonradiative decay rate are determined. The radiative decay rate of Ga-polar@sapphire LED is faster than the other three LEDs. The non-radiative decay rate of semipolar@m-sapphire LED is faster than the other three LEDs.
館藏
  • 2 筆 • 頁數 1 •
 
310002393836 博碩士論文區(二樓) 不外借資料 學位論文 TH 008M/0019 423203 0046 2013 一般使用(Normal) 在架 0
310002393844 博碩士論文區(二樓) 不外借資料 學位論文 TH 008M/0019 423203 0046 2013 c.2 一般使用(Normal) 在架 0
  • 2 筆 • 頁數 1 •
評論
Export
取書館別
 
 
變更密碼
登入