Language:
English
繁體中文
Help
圖資館首頁
Login
Back
Switch To:
Labeled
|
MARC Mode
|
ISBD
On the structure and invariants of c...
~
Birdsong, Sarah J.
On the structure and invariants of cubical complexes.
Record Type:
Electronic resources : Monograph/item
Title/Author:
On the structure and invariants of cubical complexes.
Author:
Birdsong, Sarah J.
Description:
124 p.
Notes:
Source: Dissertation Abstracts International, Volume: 74-09(E), Section: B.
Notes:
Adviser: Gabor Hetyei.
Contained By:
Dissertation Abstracts International74-09B(E).
Subject:
Applied Mathematics.
Online resource:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3563124
ISBN:
9781303111945
On the structure and invariants of cubical complexes.
Birdsong, Sarah J.
On the structure and invariants of cubical complexes.
- 124 p.
Source: Dissertation Abstracts International, Volume: 74-09(E), Section: B.
Thesis (Ph.D.)--The University of North Carolina at Charlotte, 2013.
This dissertation introduces two new results for cubical complexes. The first is a simple statistic on noncrossing partitions that expresses each coordinate of the toric h-vector of a cubical complex, written in the basis of the Adin h-vector entries, as the total weight of all noncrossing partitions. This expression can then be used to obtain a simple combinatorial interpretation of the contribution of a cubical shelling component to the toric h-vector.
ISBN: 9781303111945Subjects--Topical Terms:
530992
Applied Mathematics.
On the structure and invariants of cubical complexes.
LDR
:01718nmm a2200289 4500
001
419271
005
20140520124008.5
008
140717s2013 ||||||||||||||||| ||eng d
020
$a
9781303111945
035
$a
(MiAaPQ)AAI3563124
035
$a
AAI3563124
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Birdsong, Sarah J.
$3
660296
245
1 0
$a
On the structure and invariants of cubical complexes.
300
$a
124 p.
500
$a
Source: Dissertation Abstracts International, Volume: 74-09(E), Section: B.
500
$a
Adviser: Gabor Hetyei.
502
$a
Thesis (Ph.D.)--The University of North Carolina at Charlotte, 2013.
520
$a
This dissertation introduces two new results for cubical complexes. The first is a simple statistic on noncrossing partitions that expresses each coordinate of the toric h-vector of a cubical complex, written in the basis of the Adin h-vector entries, as the total weight of all noncrossing partitions. This expression can then be used to obtain a simple combinatorial interpretation of the contribution of a cubical shelling component to the toric h-vector.
520
$a
Secondly, a class of indecomposable permutations, bijectively equivalent to standard double occurrence words, may be used to encode one representative from each equivalence class of the shellings of the boundary of the hypercube. Finally, an adjacent transposition Gray code is constructed for this class of permutations, which can be implemented in constant amortized time.
590
$a
School code: 0694.
650
4
$a
Applied Mathematics.
$3
530992
650
4
$a
Mathematics.
$3
184409
690
$a
0364
690
$a
0405
710
2
$a
The University of North Carolina at Charlotte.
$b
Applied Mathematics (PhD).
$3
660297
773
0
$t
Dissertation Abstracts International
$g
74-09B(E).
790
$a
0694
791
$a
Ph.D.
792
$a
2013
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3563124
based on 0 review(s)
Multimedia
Multimedia file
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=3563124
Reviews
Add a review
and share your thoughts with other readers
Export
pickup library
Processing
...
Change password
Login