語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
架構於餘數系統之模數組{2p-j,2p+j}進行有效率的奇偶校驗 = R...
~
國立高雄大學資訊工程學系碩士班
架構於餘數系統之模數組{2p-j,2p+j}進行有效率的奇偶校驗 = Residue Number System Parity Detection Technique Using the Two-Moduli Set {2p-j,2p+j}
紀錄類型:
書目-語言資料,印刷品 : 單行本
並列題名:
Residue Number System Parity Detection Technique Using the Two-Moduli Set {2p-j,2p+j}
作者:
洪文彬,
其他團體作者:
國立高雄大學
出版地:
[高雄市]
出版者:
撰者;
出版年:
2014[民103]
面頁冊數:
57面圖,表 : 30公分;
標題:
餘數系統
標題:
residue number system
電子資源:
http://handle.ncl.edu.tw/11296/ndltd/03526784822511709808
附註:
參考書目:面46-47
附註:
103年12月16日公開
摘要註:
餘數系統的運算特性是無論在加法、減法以及乘法上都具有平行、無進位和快速的性質。然而,餘數系統對於正負符號的偵測、溢位的偵測、數值的比較和除法的運算就非常困難。其中,除法必須利用數值的比較,數值的比較架構於溢位的偵測,而溢位的偵測可由正負符號偵測來完成,然正負符號偵測可以靠奇偶校驗技術來驗證,因此,奇偶校驗技術是目前餘數系統最重要的課題之一。本論文主要是在餘數系統下,架構於一對模數組 {2p-j,2p+j},提出有效率的奇偶之校驗技術。給定一個餘數系統的數值 X={x_1,x_2},模數組 T={2p-j,2p+j},其中 j 為奇數和 p 為整數且滿足 p=(j+1)/2 mod j。在 x_1≥ x_2,且 (j+1)/2 和 p 為相異奇偶性質時,X 的奇偶判斷取決於 ⌊(((2j-1)x_1+x_2))⁄2j⌋ mod 2;反之,(j+1)/2 和 p 為相同奇偶性質時,X 的奇偶判斷取決於 x_1+x_2+⌊(((2j-1)x_1+x_2))⁄2j⌋ mod 2。又在 x_1 < x_2, 且 (j+1)/2 和 p 相異奇偶性質時,X 的奇偶判斷決定於 ⌊(((2j-1)x_1+x_2-1))⁄2j⌋ mod 2;反之,(j+1)/2 和 p 為相同奇偶性質時,X 的奇偶判斷決定於 x_1+x_2+⌊(((2j-1)x_1+x_2-1))⁄2j⌋ mod 2。 Residue Number System (RNS) has computational advantages for addition, subtraction and multiplication because of its properties of parallel, carry free, and high-speed arithmetic. But Residue Number System has computational problem for sign detection, overflow detection, number comparison and division. Division has to use with the number comparison. Number comparison is based on overflow detection. Overflow detection can accomplish the sing detection. Sing detection can confirm by parity detection technique. Therefore, parity detection technique is one of the most important issue in the Residue Number System. This paper discusses Residue Number System parity detection technique using two-moduli set {2p-j,2p+j}. Given an RNS number X={x_1,x_2 } based on the two-moduli set T={2p-j,2p+j },where j is odd and p is positive integer satisfying p=(j+1)/2 mod j . If x_1 ≥ x_2, (j+1)/2 and p are the different parity , it found that the parity of X is ⌊(((2j-1)x_1+x_2))⁄2j⌋ mod 2. On the contrary, (j+1)/2 and p are the same parity, that the parity of X is x_1+x_2+⌊(((2j-1)x_1+x_2))⁄2j⌋ mod 2. If x_1
架構於餘數系統之模數組{2p-j,2p+j}進行有效率的奇偶校驗 = Residue Number System Parity Detection Technique Using the Two-Moduli Set {2p-j,2p+j}
洪, 文彬
架構於餘數系統之模數組{2p-j,2p+j}進行有效率的奇偶校驗
= Residue Number System Parity Detection Technique Using the Two-Moduli Set {2p-j,2p+j} / 洪文彬撰 - [高雄市] : 撰者, 2014[民103]. - 57面 ; 圖,表 ; 30公分.
參考書目:面46-47103年12月16日公開.
餘數系統residue number system
架構於餘數系統之模數組{2p-j,2p+j}進行有效率的奇偶校驗 = Residue Number System Parity Detection Technique Using the Two-Moduli Set {2p-j,2p+j}
LDR
:03691nam0a2200277 450
001
430134
005
20170214094258.0
009
430134
010
0
$b
精裝
010
0
$b
平裝
100
$a
20170214d2014 k y0chiy05 e
101
1
$a
chi
$d
chi
$d
eng
102
$a
tw
105
$a
ak am 000yy
200
1
$a
架構於餘數系統之模數組{2p-j,2p+j}進行有效率的奇偶校驗
$d
Residue Number System Parity Detection Technique Using the Two-Moduli Set {2p-j,2p+j}
$z
eng
$f
洪文彬撰
210
$a
[高雄市]
$c
撰者
$d
2014[民103]
215
0
$a
57面
$c
圖,表
$d
30公分
300
$a
參考書目:面46-47
300
$a
103年12月16日公開
314
$a
指導教授:陳佳妍博士、陳建源博士
328
$a
碩士論文--國立高雄大學資訊工程學系碩士班
330
$a
餘數系統的運算特性是無論在加法、減法以及乘法上都具有平行、無進位和快速的性質。然而,餘數系統對於正負符號的偵測、溢位的偵測、數值的比較和除法的運算就非常困難。其中,除法必須利用數值的比較,數值的比較架構於溢位的偵測,而溢位的偵測可由正負符號偵測來完成,然正負符號偵測可以靠奇偶校驗技術來驗證,因此,奇偶校驗技術是目前餘數系統最重要的課題之一。本論文主要是在餘數系統下,架構於一對模數組 {2p-j,2p+j},提出有效率的奇偶之校驗技術。給定一個餘數系統的數值 X={x_1,x_2},模數組 T={2p-j,2p+j},其中 j 為奇數和 p 為整數且滿足 p=(j+1)/2 mod j。在 x_1≥ x_2,且 (j+1)/2 和 p 為相異奇偶性質時,X 的奇偶判斷取決於 ⌊(((2j-1)x_1+x_2))⁄2j⌋ mod 2;反之,(j+1)/2 和 p 為相同奇偶性質時,X 的奇偶判斷取決於 x_1+x_2+⌊(((2j-1)x_1+x_2))⁄2j⌋ mod 2。又在 x_1 < x_2, 且 (j+1)/2 和 p 相異奇偶性質時,X 的奇偶判斷決定於 ⌊(((2j-1)x_1+x_2-1))⁄2j⌋ mod 2;反之,(j+1)/2 和 p 為相同奇偶性質時,X 的奇偶判斷決定於 x_1+x_2+⌊(((2j-1)x_1+x_2-1))⁄2j⌋ mod 2。 Residue Number System (RNS) has computational advantages for addition, subtraction and multiplication because of its properties of parallel, carry free, and high-speed arithmetic. But Residue Number System has computational problem for sign detection, overflow detection, number comparison and division. Division has to use with the number comparison. Number comparison is based on overflow detection. Overflow detection can accomplish the sing detection. Sing detection can confirm by parity detection technique. Therefore, parity detection technique is one of the most important issue in the Residue Number System. This paper discusses Residue Number System parity detection technique using two-moduli set {2p-j,2p+j}. Given an RNS number X={x_1,x_2 } based on the two-moduli set T={2p-j,2p+j },where j is odd and p is positive integer satisfying p=(j+1)/2 mod j . If x_1 ≥ x_2, (j+1)/2 and p are the different parity , it found that the parity of X is ⌊(((2j-1)x_1+x_2))⁄2j⌋ mod 2. On the contrary, (j+1)/2 and p are the same parity, that the parity of X is x_1+x_2+⌊(((2j-1)x_1+x_2))⁄2j⌋ mod 2. If x_1 <x_2, (j+1)/2 and p are the different parity , it found that the parity of X is ⌊(((2j-1)x_1+x_2-1))⁄2j⌋ mod 2. Otherwise, (j+1)/2 and p are the same parity, that the parity of X is x_1+x_2+⌊(((2j-1)x_1+x_2-1))⁄2j⌋ mod 2.
610
0
$a
餘數系統
$a
奇偶校驗方法
610
1
$a
residue number system
$a
parity detection technique
681
$a
008M/0019
$b
464105 3404
$v
2007年版
700
1
$a
洪
$b
文彬
$4
撰
$3
673358
712
0 2
$a
國立高雄大學
$b
資訊工程學系碩士班
$3
353878
801
0
$a
tw
$b
NUK
$c
20141021
$g
CCR
856
7
$z
電子資源
$2
http
$u
http://handle.ncl.edu.tw/11296/ndltd/03526784822511709808
筆 0 讀者評論
全部
博碩士論文區(二樓)
館藏
2 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
310002480724
博碩士論文區(二樓)
不外借資料
學位論文
TH 008M/0019 464105 3404 2014
一般使用(Normal)
在架
0
310002480732
博碩士論文區(二樓)
不外借資料
學位論文
TH 008M/0019 464105 3404 2014 c.2
一般使用(Normal)
在架
0
2 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://handle.ncl.edu.tw/11296/ndltd/03526784822511709808
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入