語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
基因演算法應用在以ECG信號為基礎之睡眠辨識特徵值選取 = Applic...
~
吳宜衡
基因演算法應用在以ECG信號為基礎之睡眠辨識特徵值選取 = Application of genetic algorithm on ECG-based features selection for sleep staging
紀錄類型:
書目-語言資料,印刷品 : 單行本
並列題名:
Application of genetic algorithm on ECG-based features selection for sleep staging
作者:
吳宜衡,
其他團體作者:
國立高雄大學
出版地:
[高雄市]
出版者:
撰者;
出版年:
2014[民103]
面頁冊數:
70面圖,表 : 30公分;
標題:
基因演算法
標題:
Genetic Algorithm (GA)
電子資源:
http://handle.ncl.edu.tw/11296/ndltd/48500899068496205268
附註:
104年10月31日公開
附註:
參考書目:面67-70
摘要註:
隨著科技日新月異生活步調也變得相當的緊湊,擁有良好的睡眠品質更顯得相當的重要。然而並非每個人都擁有良好的睡眠品質,也很難去感覺自己的睡眠品質是否良好。在臨床上通常使用多重睡眠生理記錄儀(PSG)來記錄病患的睡眠生理訊號,並藉此來觀察病患的睡眠狀況和品質。目前判讀都是依賴專家的人工判讀,使判讀的結果可能會含有專家的主觀想法而且也十分的耗力費時。所以自動判讀系統成為相當重要的課題,可以讓我們隨時擁有省力且客觀的分析並減輕專家的負擔。一般的睡眠分析大多使用腦電圖、眼電圖和肌電圖的訊號組合但是這種方式對於使用者的睡眠品質有著一定程度干擾,使的判讀結果無法正確的反映出該使用者的真正睡眠品質。因此本研究決定採用相對干擾較低的心率訊號來開發自動判讀系統,並結合基因演算法挑選合適的特徵值做分析使得判讀時間可以大幅縮短。再利用隱藏式馬爾可夫模型(HMM)進行睡眠判讀,由於該模型可以對一段連續時間序列的狀態轉移機率及觀察狀態機率來分析,而HMM在狀態估測的過程中前一個狀態的結果會影響到下一個狀態,因此HMM適合具有連續階段轉移特性的睡眠階段辨識。 Sleep is very important to everyone. However, not everyone can acquire good sleep quality. For the diagnosis, all night polysomnographic (PSG) recordings are usually taken from the patients. The doctor needs to realize the sleep quality and quantity of them. Nevertheless, visual sleep scoring is a time consuming and subjective process. Therefore, developing an automatic sleep scoring method is a very important issue. Due to the disturbance from typical biomedical signals: EEG, EOG, and EMG recording are too huge, the sleep quality scored from those signals is not accurate enough. So our objective of this study is developing an automatic sleep scoring method which only uses the heart rate as the input signal. Although the method using HRV as the input signal is not good enough, the benefits like less disturbance, easy to use and capability of detecting sleep cycle, make it has unlimited potential. We used Genetic Algorithm(GA) to select some suitable features calculated ECG for sleep staging. Combine DHMM which is trained by using the codebook for all testing features. The trained DHMM model is used for sleep staging. Through theevolution of GA and DHMM, better chromosomes or more suitablefeatures are obtained.
基因演算法應用在以ECG信號為基礎之睡眠辨識特徵值選取 = Application of genetic algorithm on ECG-based features selection for sleep staging
吳, 宜衡
基因演算法應用在以ECG信號為基礎之睡眠辨識特徵值選取
= Application of genetic algorithm on ECG-based features selection for sleep staging / 吳宜衡撰 - [高雄市] : 撰者, 2014[民103]. - 70面 ; 圖,表 ; 30公分.
104年10月31日公開參考書目:面67-70.
基因演算法Genetic Algorithm (GA)
基因演算法應用在以ECG信號為基礎之睡眠辨識特徵值選取 = Application of genetic algorithm on ECG-based features selection for sleep staging
LDR
:03830nam0a2200289 450
001
446538
005
20170214094802.0
009
446538
010
0
$b
精裝
010
0
$b
平裝
100
$a
20170214y2014 k y0chiy50 e
101
0
$a
chi
$d
chi
$d
eng
102
$a
tw
105
$a
ak am 000yy
200
1
$a
基因演算法應用在以ECG信號為基礎之睡眠辨識特徵值選取
$d
Application of genetic algorithm on ECG-based features selection for sleep staging
$f
吳宜衡撰
210
$a
[高雄市]
$c
撰者
$d
2014[民103]
215
0
$a
70面
$c
圖,表
$d
30公分
300
$a
104年10月31日公開
300
$a
參考書目:面67-70
314
$a
指導教授:潘欣泰博士
328
$a
碩士論文--國立高雄大學資訊工程學系碩士班
330
$a
隨著科技日新月異生活步調也變得相當的緊湊,擁有良好的睡眠品質更顯得相當的重要。然而並非每個人都擁有良好的睡眠品質,也很難去感覺自己的睡眠品質是否良好。在臨床上通常使用多重睡眠生理記錄儀(PSG)來記錄病患的睡眠生理訊號,並藉此來觀察病患的睡眠狀況和品質。目前判讀都是依賴專家的人工判讀,使判讀的結果可能會含有專家的主觀想法而且也十分的耗力費時。所以自動判讀系統成為相當重要的課題,可以讓我們隨時擁有省力且客觀的分析並減輕專家的負擔。一般的睡眠分析大多使用腦電圖、眼電圖和肌電圖的訊號組合但是這種方式對於使用者的睡眠品質有著一定程度干擾,使的判讀結果無法正確的反映出該使用者的真正睡眠品質。因此本研究決定採用相對干擾較低的心率訊號來開發自動判讀系統,並結合基因演算法挑選合適的特徵值做分析使得判讀時間可以大幅縮短。再利用隱藏式馬爾可夫模型(HMM)進行睡眠判讀,由於該模型可以對一段連續時間序列的狀態轉移機率及觀察狀態機率來分析,而HMM在狀態估測的過程中前一個狀態的結果會影響到下一個狀態,因此HMM適合具有連續階段轉移特性的睡眠階段辨識。 Sleep is very important to everyone. However, not everyone can acquire good sleep quality. For the diagnosis, all night polysomnographic (PSG) recordings are usually taken from the patients. The doctor needs to realize the sleep quality and quantity of them. Nevertheless, visual sleep scoring is a time consuming and subjective process. Therefore, developing an automatic sleep scoring method is a very important issue. Due to the disturbance from typical biomedical signals: EEG, EOG, and EMG recording are too huge, the sleep quality scored from those signals is not accurate enough. So our objective of this study is developing an automatic sleep scoring method which only uses the heart rate as the input signal. Although the method using HRV as the input signal is not good enough, the benefits like less disturbance, easy to use and capability of detecting sleep cycle, make it has unlimited potential. We used Genetic Algorithm(GA) to select some suitable features calculated ECG for sleep staging. Combine DHMM which is trained by using the codebook for all testing features. The trained DHMM model is used for sleep staging. Through theevolution of GA and DHMM, better chromosomes or more suitablefeatures are obtained.
510
1
$a
Application of genetic algorithm on ECG-based features selection for sleep staging
$z
eng
610
0
$a
基因演算法
$a
隱藏式馬可夫模型
$a
睡眠狀態判讀
610
1
$a
Genetic Algorithm (GA)
$a
ECG
$a
sleep staging
$a
Discrete Hidden Markov Model (DHMM)
681
$a
008M/0019
$b
464103 2632.1
$v
2007年版
700
1
$a
吳
$b
宜衡
$4
撰
$3
700847
712
0 2
$a
國立高雄大學
$b
資訊工程學系碩士班
$3
353878
801
0
$a
tw
$b
NUK
$c
20151015
$g
CCR
856
7
$z
電子資源
$2
http
$u
http://handle.ncl.edu.tw/11296/ndltd/48500899068496205268
筆 0 讀者評論
全部
博碩士論文區(二樓)
館藏
2 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
310002561614
博碩士論文區(二樓)
不外借資料
學位論文
TH 008M/0019 464103 2632.1 2014
一般使用(Normal)
在架
0
310002561622
博碩士論文區(二樓)
不外借資料
學位論文
TH 008M/0019 464103 2632.1 2014 c.2
一般使用(Normal)
在架
0
2 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://handle.ncl.edu.tw/11296/ndltd/48500899068496205268
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入