語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Chi-squared goodness of fit tests wi...
~
Balakrishnan, N., (1956-)
Chi-squared goodness of fit tests with applications
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Chi-squared goodness of fit tests with applicationsV. Voinov, KIMEP University; Institute for Mathematics and Mathematical Modeling of the Ministry of Education and Science, Almaty, Kazakhstan, M. Nikulin, University Bordeaux-2, Bordeaux, France, N. Balakrishnan, McMaster University, Hamilton, Ontario, Canada.
作者:
Voinov, Vassiliy.
其他作者:
Balakrishnan, N.,
出版者:
Amsterdam :Elsevier/AP,2013.
面頁冊數:
xii, 229 p. :ill. ;24 cm.
標題:
Chi-square test.
電子資源:
http://www.sciencedirect.com/science/book/9780123971944
ISBN:
9780123971944 (electronic bk.)
Chi-squared goodness of fit tests with applications
Voinov, Vassiliy.
Chi-squared goodness of fit tests with applications
[electronic resource] /V. Voinov, KIMEP University; Institute for Mathematics and Mathematical Modeling of the Ministry of Education and Science, Almaty, Kazakhstan, M. Nikulin, University Bordeaux-2, Bordeaux, France, N. Balakrishnan, McMaster University, Hamilton, Ontario, Canada. - Amsterdam :Elsevier/AP,2013. - xii, 229 p. :ill. ;24 cm.
Includes bibliographical references (p. 215-226) and index.
"If the number of sample observations n ! 1, the statistic in (1.1) will follow the chi-squared probability distribution with r-1 degrees of freedom. We know that this remarkable result is true only for a simple null hypothesis when a hypothetical distribution is specified uniquely (i.e., the parameter is considered to be known). Until 1934, Pearson believed that the limiting distribution of the statistic in (1.1) will be the same if the unknown parameters of the null hypothesis are replaced by their estimates based on a sample; see, for example, Baird (1983), Plackett (1983, p. 63), Lindley (1996), Rao (2002), and Stigler (2008, p. 266). In this regard, it is important to reproduce the words of Plackett (1983, p. 69) concerning E. S. Pearson's opinion: "I knew long ago that KP (meaning Karl Pearson) used the 'correct' degrees of freedom for (a) difference between two samples and (b) multiple contingency tables. But he could not see that
ISBN: 9780123971944 (electronic bk.)
LCCN: 2012039862Subjects--Topical Terms:
182578
Chi-square test.
LC Class. No.: QA277.3 / .V65 2013
Dewey Class. No.: 519.5/6
Chi-squared goodness of fit tests with applications
LDR
:02508cmm a2200229 a 4500
001
449405
005
20140627153412.0
008
150513s2013 ne a sb 001 0 eng
010
$a
2012039862
020
$a
9780123971944 (electronic bk.)
020
$a
9780123971944
035
$a
14000085
040
$a
DLC
$b
eng
$c
DLC
$e
rda
$d
DLC
041
0
$a
eng
042
$a
pcc
050
0 0
$a
QA277.3
$b
.V65 2013
082
0 0
$a
519.5/6
$2
23
100
1
$a
Voinov, Vassiliy.
$3
603560
245
1 0
$a
Chi-squared goodness of fit tests with applications
$h
[electronic resource] /
$c
V. Voinov, KIMEP University; Institute for Mathematics and Mathematical Modeling of the Ministry of Education and Science, Almaty, Kazakhstan, M. Nikulin, University Bordeaux-2, Bordeaux, France, N. Balakrishnan, McMaster University, Hamilton, Ontario, Canada.
260
$a
Amsterdam :
$b
Elsevier/AP,
$c
2013.
300
$a
xii, 229 p. :
$b
ill. ;
$c
24 cm.
504
$a
Includes bibliographical references (p. 215-226) and index.
520
$a
"If the number of sample observations n ! 1, the statistic in (1.1) will follow the chi-squared probability distribution with r-1 degrees of freedom. We know that this remarkable result is true only for a simple null hypothesis when a hypothetical distribution is specified uniquely (i.e., the parameter is considered to be known). Until 1934, Pearson believed that the limiting distribution of the statistic in (1.1) will be the same if the unknown parameters of the null hypothesis are replaced by their estimates based on a sample; see, for example, Baird (1983), Plackett (1983, p. 63), Lindley (1996), Rao (2002), and Stigler (2008, p. 266). In this regard, it is important to reproduce the words of Plackett (1983, p. 69) concerning E. S. Pearson's opinion: "I knew long ago that KP (meaning Karl Pearson) used the 'correct' degrees of freedom for (a) difference between two samples and (b) multiple contingency tables. But he could not see that
$2
in curve fitting should be got asymptotically into the same category." Plackett explained that this crucial mistake of Pearson arose from to Karl Pearson's assumption "that individual normality implies joint normality." Stigler (2008) noted that this error of Pearson "has left a positive and lasting negative impression upon the statistical world." Fisher (1924) clearly showed 1 2 CHAPTER 1. A HISTORICAL ACCOUNT that the number of degrees of freedom of Pearson's test must be reduced by the number of parameters estimated from the sample"--
$c
Provided by publisher.
650
0
$a
Chi-square test.
$3
182578
650
0
$a
Distribution (Probability theory)
$3
182306
700
1
$a
Balakrishnan, N.,
$d
1956-
$3
182304
700
1
$a
Nikulin, M. S.
$q
(Mikhail Stepanovich)
$3
434334
856
4 0
$u
http://www.sciencedirect.com/science/book/9780123971944
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000107583
電子館藏
1圖書
電子書
EB QA277.3 V65 2013
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://www.sciencedirect.com/science/book/9780123971944
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入