語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Improving infrared-based precipitati...
~
Nasrollahi, Nasrin.
Improving infrared-based precipitation retrieval algorithms using multi-spectral satellite imagery
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Improving infrared-based precipitation retrieval algorithms using multi-spectral satellite imageryby Nasrin Nasrollahi.
作者:
Nasrollahi, Nasrin.
出版者:
Cham :Springer International Publishing :2015.
面頁冊數:
xxi, 68 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
標題:
Precipitation (Meteorology)Remote sensing.
電子資源:
http://dx.doi.org/10.1007/978-3-319-12081-2
ISBN:
9783319120812 (electronic bk.)
Improving infrared-based precipitation retrieval algorithms using multi-spectral satellite imagery
Nasrollahi, Nasrin.
Improving infrared-based precipitation retrieval algorithms using multi-spectral satellite imagery
[electronic resource] /by Nasrin Nasrollahi. - Cham :Springer International Publishing :2015. - xxi, 68 p. :ill. (some col.), digital ;24 cm. - Springer theses,2190-5053. - Springer theses..
Introduction to the Current States of Satellite Precipitation Products -- False Alarm in Satellite Precipitation Data -- Satellite Observations -- Reducing False Rain in Satellite Precipitation Products Using CloudSat Cloud Classification Maps and MODIS Multi-Spectral Images -- Integration of CloudSat Precipitation Profile in Reduction of False Rain -- Cloud Classification and its Application in Reducing False Rain -- Summary and Conclusions.
This thesis transforms satellite precipitation estimation through the integration of a multi-sensor, multi-channel approach to current precipitation estimation algorithms, and provides more accurate readings of precipitation data from space. Using satellite data to estimate precipitation from space overcomes the limitation of ground-based observations in terms of availability over remote areas and oceans as well as spatial coverage. However, the accuracy of satellite-based estimates still need to be improved. The approach introduced in this thesis takes advantage of the recent NASA satellites in observing clouds and precipitation. In addition, machine-learning techniques are also employed to make the best use of remotely-sensed "big data." The results provide a significant improvement in detecting non-precipitating areas and reducing false identification of precipitation.
ISBN: 9783319120812 (electronic bk.)
Standard No.: 10.1007/978-3-319-12081-2doiSubjects--Topical Terms:
711940
Precipitation (Meteorology)
--Remote sensing.
LC Class. No.: QC925
Dewey Class. No.: 551.5770285
Improving infrared-based precipitation retrieval algorithms using multi-spectral satellite imagery
LDR
:02370nmm a2200325 a 4500
001
460479
003
DE-He213
005
20150707131852.0
006
m d
007
cr nn 008maaau
008
151110s2015 gw s 0 eng d
020
$a
9783319120812 (electronic bk.)
020
$a
9783319120805 (paper)
024
7
$a
10.1007/978-3-319-12081-2
$2
doi
035
$a
978-3-319-12081-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QC925
072
7
$a
RB
$2
bicssc
072
7
$a
SCI042000
$2
bisacsh
082
0 4
$a
551.5770285
$2
23
090
$a
QC925
$b
.N264 2015
100
1
$a
Nasrollahi, Nasrin.
$3
711939
245
1 0
$a
Improving infrared-based precipitation retrieval algorithms using multi-spectral satellite imagery
$h
[electronic resource] /
$c
by Nasrin Nasrollahi.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
xxi, 68 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Springer theses,
$x
2190-5053
505
0
$a
Introduction to the Current States of Satellite Precipitation Products -- False Alarm in Satellite Precipitation Data -- Satellite Observations -- Reducing False Rain in Satellite Precipitation Products Using CloudSat Cloud Classification Maps and MODIS Multi-Spectral Images -- Integration of CloudSat Precipitation Profile in Reduction of False Rain -- Cloud Classification and its Application in Reducing False Rain -- Summary and Conclusions.
520
$a
This thesis transforms satellite precipitation estimation through the integration of a multi-sensor, multi-channel approach to current precipitation estimation algorithms, and provides more accurate readings of precipitation data from space. Using satellite data to estimate precipitation from space overcomes the limitation of ground-based observations in terms of availability over remote areas and oceans as well as spatial coverage. However, the accuracy of satellite-based estimates still need to be improved. The approach introduced in this thesis takes advantage of the recent NASA satellites in observing clouds and precipitation. In addition, machine-learning techniques are also employed to make the best use of remotely-sensed "big data." The results provide a significant improvement in detecting non-precipitating areas and reducing false identification of precipitation.
650
0
$a
Precipitation (Meteorology)
$x
Remote sensing.
$3
711940
650
0
$a
Infrared detectors.
$3
181947
650
1 4
$a
Earth Sciences.
$3
309702
650
2 4
$a
Atmospheric Sciences.
$3
264356
650
2 4
$a
Geophysics and Environmental Physics.
$3
509365
650
2 4
$a
Meteorology.
$3
276569
650
2 4
$a
Environmental Physics.
$3
276485
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Springer theses.
$3
557607
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-12081-2
950
$a
Earth and Environmental Science (Springer-11646)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000109986
電子館藏
1圖書
電子書
EB QC925 N264 2015
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-12081-2
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入