語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Automatic speech recognitiona deep l...
~
Deng, Li.
Automatic speech recognitiona deep learning approach /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Automatic speech recognitionby Dong Yu, Li Deng.
其他題名:
a deep learning approach /
作者:
Yu, Dong.
其他作者:
Deng, Li.
出版者:
London :Springer London :2015.
面頁冊數:
xxvi, 321 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Automatic speech recognition.
電子資源:
http://dx.doi.org/10.1007/978-1-4471-5779-3
ISBN:
9781447157793 (electronic bk.)
Automatic speech recognitiona deep learning approach /
Yu, Dong.
Automatic speech recognition
a deep learning approach /[electronic resource] :by Dong Yu, Li Deng. - London :Springer London :2015. - xxvi, 321 p. :ill., digital ;24 cm. - Signals and communication technology,1860-4862. - Signals and communication technology..
Section 1: Automatic speech recognition: Background -- Feature extraction: basic frontend -- Acoustic model: Gaussian mixture hidden Markov model -- Language model: stochastic N-gram -- Historical reviews of speech recognition research: 1st, 2nd, 3rd, 3.5th, and 4th generations -- Section 2: Advanced feature extraction and transformation -- Unsupervised feature extraction -- Discriminative feature transformation -- Section 3: Advanced acoustic modeling -- Conditional random field (CRF) and hidden conditional random field (HCRF) -- Deep-Structured CRF -- Semi-Markov conditional random field -- Deep stacking models -- Deep neural network hidden Markov hybrid model -- Section 4: Advanced language modeling -- Discriminative Language model -- Log-linear language model -- Neural network language model.
This book summarizes the recent advancement in the field of automatic speech recognition with a focus on discriminative and hierarchical models. This will be the first automatic speech recognition book to include a comprehensive coverage of recent developments such as conditional random field and deep learning techniques. It presents insights and theoretical foundation of a series of recent models such as conditional random field, semi-Markov and hidden conditional random field, deep neural network, deep belief network, and deep stacking models for sequential learning. It also discusses practical considerations of using these models in both acoustic and language modeling for continuous speech recognition.
ISBN: 9781447157793 (electronic bk.)
Standard No.: 10.1007/978-1-4471-5779-3doiSubjects--Topical Terms:
184258
Automatic speech recognition.
LC Class. No.: TK7895.S65
Dewey Class. No.: 006.454
Automatic speech recognitiona deep learning approach /
LDR
:02580nmm a2200349 a 4500
001
460514
003
DE-He213
005
20150714090641.0
006
m d
007
cr nn 008maaau
008
151110s2015 enk s 0 eng d
020
$a
9781447157793 (electronic bk.)
020
$a
9781447157786 (paper)
024
7
$a
10.1007/978-1-4471-5779-3
$2
doi
035
$a
978-1-4471-5779-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TK7895.S65
072
7
$a
TTBM
$2
bicssc
072
7
$a
UYS
$2
bicssc
072
7
$a
TEC008000
$2
bisacsh
072
7
$a
COM073000
$2
bisacsh
082
0 4
$a
006.454
$2
23
090
$a
TK7895.S65
$b
Y94 2015
100
1
$a
Yu, Dong.
$3
712024
245
1 0
$a
Automatic speech recognition
$h
[electronic resource] :
$b
a deep learning approach /
$c
by Dong Yu, Li Deng.
260
$a
London :
$b
Springer London :
$b
Imprint: Springer,
$c
2015.
300
$a
xxvi, 321 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Signals and communication technology,
$x
1860-4862
505
0
$a
Section 1: Automatic speech recognition: Background -- Feature extraction: basic frontend -- Acoustic model: Gaussian mixture hidden Markov model -- Language model: stochastic N-gram -- Historical reviews of speech recognition research: 1st, 2nd, 3rd, 3.5th, and 4th generations -- Section 2: Advanced feature extraction and transformation -- Unsupervised feature extraction -- Discriminative feature transformation -- Section 3: Advanced acoustic modeling -- Conditional random field (CRF) and hidden conditional random field (HCRF) -- Deep-Structured CRF -- Semi-Markov conditional random field -- Deep stacking models -- Deep neural network hidden Markov hybrid model -- Section 4: Advanced language modeling -- Discriminative Language model -- Log-linear language model -- Neural network language model.
520
$a
This book summarizes the recent advancement in the field of automatic speech recognition with a focus on discriminative and hierarchical models. This will be the first automatic speech recognition book to include a comprehensive coverage of recent developments such as conditional random field and deep learning techniques. It presents insights and theoretical foundation of a series of recent models such as conditional random field, semi-Markov and hidden conditional random field, deep neural network, deep belief network, and deep stacking models for sequential learning. It also discusses practical considerations of using these models in both acoustic and language modeling for continuous speech recognition.
650
0
$a
Automatic speech recognition.
$3
184258
650
1 4
$a
Engineering.
$3
210888
650
2 4
$a
Signal, Image and Speech Processing.
$3
273768
650
2 4
$a
Engineering Acoustics.
$3
357294
650
2 4
$a
Computer Appl. in Social and Behavioral Sciences.
$3
274376
700
1
$a
Deng, Li.
$3
242599
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Signals and communication technology.
$3
557664
856
4 0
$u
http://dx.doi.org/10.1007/978-1-4471-5779-3
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000110021
電子館藏
1圖書
電子書
EB TK7895.S65 Y94 2015
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-1-4471-5779-3
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入