語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Advances in complex data modeling an...
~
Paganoni, Anna Maria.
Advances in complex data modeling and computational methods in statistics
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Advances in complex data modeling and computational methods in statisticsedited by Anna Maria Paganoni, Piercesare Secchi.
其他作者:
Paganoni, Anna Maria.
出版者:
Cham :Springer International Publishing :2015.
面頁冊數:
viii, 209 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
標題:
Mathematical statisticsData processing.
電子資源:
http://dx.doi.org/10.1007/978-3-319-11149-0
ISBN:
9783319111490 (electronic bk.)
Advances in complex data modeling and computational methods in statistics
Advances in complex data modeling and computational methods in statistics
[electronic resource] /edited by Anna Maria Paganoni, Piercesare Secchi. - Cham :Springer International Publishing :2015. - viii, 209 p. :ill. (some col.), digital ;24 cm. - Contributions to statistics,1431-1968. - Contributions to statistics..
The book is addressed to statisticians working at the forefront of the statistical analysis of complex and high dimensional data and offers a wide variety of statistical models, computer intensive methods and applications: network inference from the analysis of high dimensional data; new developments for bootstrapping complex data; regression analysis for measuring the downsize reputational risk; statistical methods for research on the human genome dynamics; inference in non-euclidean settings and for shape data; Bayesian methods for reliability and the analysis of complex data; methodological issues in using administrative data for clinical and epidemiological research; regression models with differential regularization; geostatistical methods for mobility analysis through mobile phone data exploration. This volume is the result of a careful selection among the contributions presented at the conference "S.Co.2013: Complex data modeling and computationally intensive methods for estimation and prediction" held at the Politecnico di Milano, 2013. All the papers published here have been rigorously peer-reviewed.
ISBN: 9783319111490 (electronic bk.)
Standard No.: 10.1007/978-3-319-11149-0doiSubjects--Topical Terms:
183916
Mathematical statistics
--Data processing.
LC Class. No.: QA276.4 / .A38 2015
Dewey Class. No.: 519.5
Advances in complex data modeling and computational methods in statistics
LDR
:02171nmm a2200313 a 4500
001
460730
003
DE-He213
005
20150713104557.0
006
m d
007
cr nn 008maaau
008
151110s2015 gw s 0 eng d
020
$a
9783319111490 (electronic bk.)
020
$a
9783319111483 (paper)
024
7
$a
10.1007/978-3-319-11149-0
$2
doi
035
$a
978-3-319-11149-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA276.4
$b
.A38 2015
072
7
$a
PBT
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
082
0 4
$a
519.5
$2
23
090
$a
QA276.4
$b
.A244 2015
245
0 0
$a
Advances in complex data modeling and computational methods in statistics
$h
[electronic resource] /
$c
edited by Anna Maria Paganoni, Piercesare Secchi.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
viii, 209 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Contributions to statistics,
$x
1431-1968
520
$a
The book is addressed to statisticians working at the forefront of the statistical analysis of complex and high dimensional data and offers a wide variety of statistical models, computer intensive methods and applications: network inference from the analysis of high dimensional data; new developments for bootstrapping complex data; regression analysis for measuring the downsize reputational risk; statistical methods for research on the human genome dynamics; inference in non-euclidean settings and for shape data; Bayesian methods for reliability and the analysis of complex data; methodological issues in using administrative data for clinical and epidemiological research; regression models with differential regularization; geostatistical methods for mobility analysis through mobile phone data exploration. This volume is the result of a careful selection among the contributions presented at the conference "S.Co.2013: Complex data modeling and computationally intensive methods for estimation and prediction" held at the Politecnico di Milano, 2013. All the papers published here have been rigorously peer-reviewed.
650
0
$a
Mathematical statistics
$x
Data processing.
$3
183916
650
1 4
$a
Statistics.
$3
182057
650
2 4
$a
Statistical Theory and Methods.
$3
274054
650
2 4
$a
Applications of Mathematics.
$3
273744
650
2 4
$a
Biostatistics.
$3
339693
650
2 4
$a
Complexity.
$3
274400
650
2 4
$a
Software Engineering/Programming and Operating Systems.
$3
273711
700
1
$a
Paganoni, Anna Maria.
$3
712347
700
1
$a
Secchi, Piercesare.
$3
497833
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Contributions to statistics.
$3
593379
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-11149-0
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000110237
電子館藏
1圖書
電子書
EB QA276.4 A244 2015
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-11149-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入