語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
EMG signals characterization in thre...
~
Gunjan, Vinit Kumar.
EMG signals characterization in three states of contraction by fuzzy network and feature extraction
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
EMG signals characterization in three states of contraction by fuzzy network and feature extractionby Bita Mokhlesabadifarahani, Vinit Kumar Gunjan.
作者:
Mokhlesabadifarahani, Bita.
其他作者:
Gunjan, Vinit Kumar.
出版者:
Singapore :Springer Singapore :2015.
面頁冊數:
xv, 35 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
標題:
Signal processingDigital techniques.
電子資源:
http://dx.doi.org/10.1007/978-981-287-320-0
ISBN:
9789812873200 (electronic bk.)
EMG signals characterization in three states of contraction by fuzzy network and feature extraction
Mokhlesabadifarahani, Bita.
EMG signals characterization in three states of contraction by fuzzy network and feature extraction
[electronic resource] /by Bita Mokhlesabadifarahani, Vinit Kumar Gunjan. - Singapore :Springer Singapore :2015. - xv, 35 p. :ill. (some col.), digital ;24 cm. - SpringerBriefs in applied sciences and technology, Forensic and medical bioinformatics,2191-530X. - SpringerBriefs in applied sciences and technology.Forensic and medical bioinformatics..
Introduction to EMG Technique and Feature Extraction -- Methodology for working with EMG dataset -- Results -- Conclusions and Inferences of Present Study.
Neuro-muscular and musculoskeletal disorders and injuries highly affect the life style and the motion abilities of an individual. This brief highlights a systematic method for detection of the level of muscle power declining in musculoskeletal and Neuro-muscular disorders. The neuro-fuzzy system is trained with 70 percent of the recorded Electromyography (EMG) cut off window and then used for classification and modeling purposes. The neuro-fuzzy classifier is validated in comparison to some other well-known classifiers in classification of the recorded EMG signals with the three states of contractions corresponding to the extracted features. Different structures of the neuro-fuzzy classifier are also comparatively analyzed to find the optimum structure of the classifier used.
ISBN: 9789812873200 (electronic bk.)
Standard No.: 10.1007/978-981-287-320-0doiSubjects--Topical Terms:
182126
Signal processing
--Digital techniques.
LC Class. No.: TK5102.9
Dewey Class. No.: 621.3822
EMG signals characterization in three states of contraction by fuzzy network and feature extraction
LDR
:02071nmm a2200325 a 4500
001
461861
003
DE-He213
005
20150921151615.0
006
m d
007
cr nn 008maaau
008
151110s2015 si s 0 eng d
020
$a
9789812873200 (electronic bk.)
020
$a
9789812873194 (paper)
024
7
$a
10.1007/978-981-287-320-0
$2
doi
035
$a
978-981-287-320-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TK5102.9
072
7
$a
MQW
$2
bicssc
072
7
$a
TEC009000
$2
bisacsh
082
0 4
$a
621.3822
$2
23
090
$a
TK5102.9
$b
.M716 2015
100
1
$a
Mokhlesabadifarahani, Bita.
$3
714266
245
1 0
$a
EMG signals characterization in three states of contraction by fuzzy network and feature extraction
$h
[electronic resource] /
$c
by Bita Mokhlesabadifarahani, Vinit Kumar Gunjan.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2015.
300
$a
xv, 35 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in applied sciences and technology, Forensic and medical bioinformatics,
$x
2191-530X
505
0
$a
Introduction to EMG Technique and Feature Extraction -- Methodology for working with EMG dataset -- Results -- Conclusions and Inferences of Present Study.
520
$a
Neuro-muscular and musculoskeletal disorders and injuries highly affect the life style and the motion abilities of an individual. This brief highlights a systematic method for detection of the level of muscle power declining in musculoskeletal and Neuro-muscular disorders. The neuro-fuzzy system is trained with 70 percent of the recorded Electromyography (EMG) cut off window and then used for classification and modeling purposes. The neuro-fuzzy classifier is validated in comparison to some other well-known classifiers in classification of the recorded EMG signals with the three states of contractions corresponding to the extracted features. Different structures of the neuro-fuzzy classifier are also comparatively analyzed to find the optimum structure of the classifier used.
650
0
$a
Signal processing
$x
Digital techniques.
$3
182126
650
0
$a
Fuzzy systems.
$3
182084
650
1 4
$a
Engineering.
$3
210888
650
2 4
$a
Biomedical Engineering.
$3
190464
650
2 4
$a
Orthopedics.
$3
275845
650
2 4
$a
Forensic Science.
$3
308650
650
2 4
$a
Computational Biology/Bioinformatics.
$3
274833
650
2 4
$a
Health Informatics.
$3
274212
650
2 4
$a
Rehabilitation.
$3
220943
700
1
$a
Gunjan, Vinit Kumar.
$3
712151
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in applied sciences and technology.
$p
Forensic and medical bioinformatics.
$3
710368
856
4 0
$u
http://dx.doi.org/10.1007/978-981-287-320-0
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000111368
電子館藏
1圖書
電子書
EB TK5102.9 M716 2015
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-981-287-320-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入