語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Real time deforestation detection us...
~
Kehl, Thiago Nunes.
Real time deforestation detection using ANN and satellite imagesthe Amazon Rainforest study case /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Real time deforestation detection using ANN and satellite imagesby Thiago Nunes Kehl ... [et al.].
其他題名:
the Amazon Rainforest study case /
其他作者:
Kehl, Thiago Nunes.
出版者:
Cham :Springer International Publishing :2015.
面頁冊數:
x, 67 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
DeforestationRemote sensing.Amazon River Region
電子資源:
http://dx.doi.org/10.1007/978-3-319-15741-2
ISBN:
9783319157412 (electronic bk.)
Real time deforestation detection using ANN and satellite imagesthe Amazon Rainforest study case /
Real time deforestation detection using ANN and satellite images
the Amazon Rainforest study case /[electronic resource] :by Thiago Nunes Kehl ... [et al.]. - Cham :Springer International Publishing :2015. - x, 67 p. :ill., digital ;24 cm. - SpringerBriefs in computer science,2191-5768. - SpringerBriefs in computer science..
1 Introduction -- 2 Literature Review -- 3 Method -- 4 Results and Discussion -- 5 Conclusions and Future Work.
The foremost aim of the present study was the development of a tool to detect daily deforestation in the Amazon rainforest, using satellite images from the MODIS/TERRA sensor and Artificial Neural Networks. The developed tool provides parameterization of the configuration for the neural network training to enable us to select the best neural architecture to address the problem. The tool makes use of confusion matrices to determine the degree of success of the network. A spectrum-temporal analysis of the study area was done on 57 images from May 20 to July 15, 2003 using the trained neural network. The analysis enabled verification of quality of the implemented neural network classification and also aided in understanding the dynamics of deforestation in the Amazon rainforest, thereby highlighting the vast potential of neural networks for image classification. However, the complex task of detection of predatory actions at the beginning, i.e., generation of consistent alarms, instead of false alarms has not been solved yet. Thus, the present article provides a theoretical basis and elaboration of practical use of neural networks and satellite images to combat illegal deforestation.
ISBN: 9783319157412 (electronic bk.)
Standard No.: 10.1007/978-3-319-15741-2doiSubjects--Topical Terms:
719285
Deforestation
--Remote sensing.--Amazon River Region
LC Class. No.: SD418.3.A53
Dewey Class. No.: 634.9098616
Real time deforestation detection using ANN and satellite imagesthe Amazon Rainforest study case /
LDR
:02303nmm a2200301 a 4500
001
465509
003
DE-He213
005
20151110141517.0
006
m d
007
cr nn 008maaau
008
151222s2015 gw s 0 eng d
020
$a
9783319157412 (electronic bk.)
020
$a
9783319157405 (paper)
024
7
$a
10.1007/978-3-319-15741-2
$2
doi
035
$a
978-3-319-15741-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
SD418.3.A53
082
0 4
$a
634.9098616
$2
23
090
$a
SD418.3.A53
$b
R288 2015
245
0 0
$a
Real time deforestation detection using ANN and satellite images
$h
[electronic resource] :
$b
the Amazon Rainforest study case /
$c
by Thiago Nunes Kehl ... [et al.].
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
x, 67 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in computer science,
$x
2191-5768
505
0
$a
1 Introduction -- 2 Literature Review -- 3 Method -- 4 Results and Discussion -- 5 Conclusions and Future Work.
520
$a
The foremost aim of the present study was the development of a tool to detect daily deforestation in the Amazon rainforest, using satellite images from the MODIS/TERRA sensor and Artificial Neural Networks. The developed tool provides parameterization of the configuration for the neural network training to enable us to select the best neural architecture to address the problem. The tool makes use of confusion matrices to determine the degree of success of the network. A spectrum-temporal analysis of the study area was done on 57 images from May 20 to July 15, 2003 using the trained neural network. The analysis enabled verification of quality of the implemented neural network classification and also aided in understanding the dynamics of deforestation in the Amazon rainforest, thereby highlighting the vast potential of neural networks for image classification. However, the complex task of detection of predatory actions at the beginning, i.e., generation of consistent alarms, instead of false alarms has not been solved yet. Thus, the present article provides a theoretical basis and elaboration of practical use of neural networks and satellite images to combat illegal deforestation.
650
0
$a
Deforestation
$z
Amazon River Region
$x
Remote sensing.
$3
719285
650
1 4
$a
Geography.
$3
174760
650
2 4
$a
Remote Sensing/Photogrammetry.
$3
274522
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
252959
700
1
$a
Kehl, Thiago Nunes.
$3
719284
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in computer science.
$3
559641
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-15741-2
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000113950
電子館藏
1圖書
電子書
EB SD418.3.A53 R288 2015
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-15741-2
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入