語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Optimal interconnection trees in the...
~
Brazil, Marcus.
Optimal interconnection trees in the planetheory, algorithms and applications /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Optimal interconnection trees in the planeby Marcus Brazil, Martin Zachariasen.
其他題名:
theory, algorithms and applications /
作者:
Brazil, Marcus.
其他作者:
Zachariasen, Martin.
出版者:
Cham :Springer International Publishing :2015.
面頁冊數:
xvii, 344 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
標題:
Trees (Graph theory)
電子資源:
http://dx.doi.org/10.1007/978-3-319-13915-9
ISBN:
9783319139159 (electronic bk.)
Optimal interconnection trees in the planetheory, algorithms and applications /
Brazil, Marcus.
Optimal interconnection trees in the plane
theory, algorithms and applications /[electronic resource] :by Marcus Brazil, Martin Zachariasen. - Cham :Springer International Publishing :2015. - xvii, 344 p. :ill. (some col.), digital ;24 cm. - Algorithms and combinatorics,v.290937-5511 ;. - Algorithms and combinatorics ;v.21..
Preface:- 1 Euclidean and Minkowski Steiner Trees -- 2 Fixed Orientation Steiner Trees -- 3 Rectilinear Steiner Trees -- 4 Steiner Trees with Other Costs and Constraints -- 5 Steiner Trees in Graphs and Hypergraphs -- A Appendix.
This book explores fundamental aspects of geometric network optimisation with applications to a variety of real world problems. It presents, for the first time in the literature, a cohesive mathematical framework within which the properties of such optimal interconnection networks can be understood across a wide range of metrics and cost functions. The book makes use of this mathematical theory to develop efficient algorithms for constructing such networks, with an emphasis on exact solutions. Marcus Brazil and Martin Zachariasen focus principally on the geometric structure of optimal interconnection networks, also known as Steiner trees, in the plane. They show readers how an understanding of this structure can lead to practical exact algorithms for constructing such trees. The book also details numerous breakthroughs in this area over the past 20 years, features clearly written proofs, and is supported by 135 colour and 15 black and white figures. It will help graduate students, working mathematicians, engineers and computer scientists to understand the principles required for designing interconnection networks in the plane that are as cost efficient as possible.
ISBN: 9783319139159 (electronic bk.)
Standard No.: 10.1007/978-3-319-13915-9doiSubjects--Topical Terms:
185778
Trees (Graph theory)
LC Class. No.: QA166.2
Dewey Class. No.: 511.52
Optimal interconnection trees in the planetheory, algorithms and applications /
LDR
:02469nmm a2200325 a 4500
001
465807
003
DE-He213
005
20151117104647.0
006
m d
007
cr nn 008maaau
008
151222s2015 gw s 0 eng d
020
$a
9783319139159 (electronic bk.)
020
$a
9783319139142 (paper)
024
7
$a
10.1007/978-3-319-13915-9
$2
doi
035
$a
978-3-319-13915-9
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA166.2
072
7
$a
PBV
$2
bicssc
072
7
$a
MAT036000
$2
bisacsh
082
0 4
$a
511.52
$2
23
090
$a
QA166.2
$b
.B827 2015
100
1
$a
Brazil, Marcus.
$3
719762
245
1 0
$a
Optimal interconnection trees in the plane
$h
[electronic resource] :
$b
theory, algorithms and applications /
$c
by Marcus Brazil, Martin Zachariasen.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
xvii, 344 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Algorithms and combinatorics,
$x
0937-5511 ;
$v
v.29
505
0
$a
Preface:- 1 Euclidean and Minkowski Steiner Trees -- 2 Fixed Orientation Steiner Trees -- 3 Rectilinear Steiner Trees -- 4 Steiner Trees with Other Costs and Constraints -- 5 Steiner Trees in Graphs and Hypergraphs -- A Appendix.
520
$a
This book explores fundamental aspects of geometric network optimisation with applications to a variety of real world problems. It presents, for the first time in the literature, a cohesive mathematical framework within which the properties of such optimal interconnection networks can be understood across a wide range of metrics and cost functions. The book makes use of this mathematical theory to develop efficient algorithms for constructing such networks, with an emphasis on exact solutions. Marcus Brazil and Martin Zachariasen focus principally on the geometric structure of optimal interconnection networks, also known as Steiner trees, in the plane. They show readers how an understanding of this structure can lead to practical exact algorithms for constructing such trees. The book also details numerous breakthroughs in this area over the past 20 years, features clearly written proofs, and is supported by 135 colour and 15 black and white figures. It will help graduate students, working mathematicians, engineers and computer scientists to understand the principles required for designing interconnection networks in the plane that are as cost efficient as possible.
650
0
$a
Trees (Graph theory)
$3
185778
650
0
$a
Steiner systems.
$3
340139
650
0
$a
Combinatorial optimization.
$3
185796
650
0
$a
Combinatorial analysis.
$3
182280
650
1 4
$a
Mathematics.
$3
184409
650
2 4
$a
Combinatorics.
$3
274788
650
2 4
$a
Discrete Mathematics in Computer Science.
$3
274791
650
2 4
$a
Geometry.
$3
183883
650
2 4
$a
Optimization.
$3
274084
650
2 4
$a
Algorithms.
$3
184661
650
2 4
$a
Appl.Mathematics/Computational Methods of Engineering.
$3
273758
700
1
$a
Zachariasen, Martin.
$3
719763
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Algorithms and combinatorics ;
$v
v.21.
$3
560076
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-13915-9
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000114248
電子館藏
1圖書
電子書
EB QA166.2 B827 2015
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-13915-9
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入