語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Feature selection for high-dimension...
~
Alonso-Betanzos, Amparo.
Feature selection for high-dimensional data
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Feature selection for high-dimensional databy Veronica Bolon-Canedo, Noelia Sanchez-Marono, Amparo Alonso-Betanzos.
作者:
Bolon-Canedo, Veronica.
其他作者:
Sanchez-Marono, Noelia.
出版者:
Cham :Springer International Publishing :2015.
面頁冊數:
xv, 147 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Data mining.
電子資源:
http://dx.doi.org/10.1007/978-3-319-21858-8
ISBN:
9783319218588$q(electronic bk.)
Feature selection for high-dimensional data
Bolon-Canedo, Veronica.
Feature selection for high-dimensional data
[electronic resource] /by Veronica Bolon-Canedo, Noelia Sanchez-Marono, Amparo Alonso-Betanzos. - Cham :Springer International Publishing :2015. - xv, 147 p. :ill., digital ;24 cm. - Artificial intelligence: foundations, theory, and algorithms,2365-3051. - Artificial intelligence: foundations, theory, and algorithms..
Introduction to High-Dimensionality -- Foundations of Feature Selection -- Experimental Framework -- Critical Review of Feature Selection Methods -- Application of Feature Selection to Real Problems -- Emerging Challenges.
This book offers a coherent and comprehensive approach to feature subset selection in the scope of classification problems, explaining the foundations, real application problems and the challenges of feature selection for high-dimensional data. The authors first focus on the analysis and synthesis of feature selection algorithms, presenting a comprehensive review of basic concepts and experimental results of the most well-known algorithms. They then address different real scenarios with high-dimensional data, showing the use of feature selection algorithms in different contexts with different requirements and information: microarray data, intrusion detection, tear film lipid layer classification and cost-based features. The book then delves into the scenario of big dimension, paying attention to important problems under high-dimensional spaces, such as scalability, distributed processing and real-time processing, scenarios that open up new and interesting challenges for researchers. The book is useful for practitioners, researchers and graduate students in the areas of machine learning and data mining.
ISBN: 9783319218588$q(electronic bk.)
Standard No.: 10.1007/978-3-319-21858-8doiSubjects--Topical Terms:
184440
Data mining.
LC Class. No.: QA76.9.D343
Dewey Class. No.: 006.312
Feature selection for high-dimensional data
LDR
:02435nmm a2200337 a 4500
001
476492
003
DE-He213
005
20160422160819.0
006
m d
007
cr nn 008maaau
008
160526s2015 gw s 0 eng d
020
$a
9783319218588$q(electronic bk.)
020
$a
9783319218571$q(paper)
024
7
$a
10.1007/978-3-319-21858-8
$2
doi
035
$a
978-3-319-21858-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.D343
072
7
$a
UYQ
$2
bicssc
072
7
$a
TJFM1
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
006.312
$2
23
090
$a
QA76.9.D343
$b
B693 2015
100
1
$a
Bolon-Canedo, Veronica.
$3
731160
245
1 0
$a
Feature selection for high-dimensional data
$h
[electronic resource] /
$c
by Veronica Bolon-Canedo, Noelia Sanchez-Marono, Amparo Alonso-Betanzos.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
xv, 147 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Artificial intelligence: foundations, theory, and algorithms,
$x
2365-3051
505
0
$a
Introduction to High-Dimensionality -- Foundations of Feature Selection -- Experimental Framework -- Critical Review of Feature Selection Methods -- Application of Feature Selection to Real Problems -- Emerging Challenges.
520
$a
This book offers a coherent and comprehensive approach to feature subset selection in the scope of classification problems, explaining the foundations, real application problems and the challenges of feature selection for high-dimensional data. The authors first focus on the analysis and synthesis of feature selection algorithms, presenting a comprehensive review of basic concepts and experimental results of the most well-known algorithms. They then address different real scenarios with high-dimensional data, showing the use of feature selection algorithms in different contexts with different requirements and information: microarray data, intrusion detection, tear film lipid layer classification and cost-based features. The book then delves into the scenario of big dimension, paying attention to important problems under high-dimensional spaces, such as scalability, distributed processing and real-time processing, scenarios that open up new and interesting challenges for researchers. The book is useful for practitioners, researchers and graduate students in the areas of machine learning and data mining.
650
0
$a
Data mining.
$3
184440
650
0
$a
Database management.
$3
182428
650
1 4
$a
Computer Science.
$3
212513
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
252959
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
275288
650
2 4
$a
Data Structures.
$3
273992
700
1
$a
Sanchez-Marono, Noelia.
$3
731161
700
1
$a
Alonso-Betanzos, Amparo.
$3
731162
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Artificial intelligence: foundations, theory, and algorithms.
$3
729041
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-21858-8
950
$a
Computer Science (Springer-11645)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000119711
電子館藏
1圖書
電子書
EB QA76.9.D343 B693 2015
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-21858-8
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入