語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Movie analyticsa Hollywood introduct...
~
Haughton, Dominique.
Movie analyticsa Hollywood introduction to big data /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Movie analyticsby Dominique Haughton ... [et al.].
其他題名:
a Hollywood introduction to big data /
其他作者:
Haughton, Dominique.
出版者:
Cham :Springer International Publishing :2015.
面頁冊數:
viii, 64 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Motion picturesPhilosophy.
電子資源:
http://dx.doi.org/10.1007/978-3-319-09426-7
ISBN:
9783319094267$q(electronic bk.)
Movie analyticsa Hollywood introduction to big data /
Movie analytics
a Hollywood introduction to big data /[electronic resource] :by Dominique Haughton ... [et al.]. - Cham :Springer International Publishing :2015. - viii, 64 p. :ill., digital ;24 cm. - SpringerBriefs in statistics,2191-544X. - SpringerBriefs in statistics..
What do we know about analyzing movie data: section on past literature -- What does "Big Data" mean; the data scientist point of view -- Visualization of very large networks: the co-starring social network -- Movie attendance and trends -- Oscar prediction and prediction markets -- Can we predict Oscars from Twitter and movie review data.
Movies will never be the same after you learn how to analyze movie data, including key data mining, text mining and social network analytics concepts. These techniques may then be used in endless other contexts. In the movie application, this topic opens a lively discussion on the current developments in big data from a data science perspective. This book is geared to applied researchers and practitioners and is meant to be practical. The reader will take a hands-on approach, running text mining and social network analyses with software packages covered in the book. These include R, SAS, Knime, Pajek and Gephi. The nitty-gritty of how to build datasets needed for the various analyses will be discussed as well. This includes how to extract suitable Twitter data and create a co-starring network from the IMDB database given memory constraints. The authors also guide the reader through an analysis of movie attendance data via a realistic dataset from France.
ISBN: 9783319094267$q(electronic bk.)
Standard No.: 10.1007/978-3-319-09426-7doiSubjects--Topical Terms:
181377
Motion pictures
--Philosophy.
LC Class. No.: PN1995
Dewey Class. No.: 791.43015
Movie analyticsa Hollywood introduction to big data /
LDR
:02335nmm a2200325 a 4500
001
476901
003
DE-He213
005
20160412140517.0
006
m d
007
cr nn 008maaau
008
160526s2015 gw s 0 eng d
020
$a
9783319094267$q(electronic bk.)
020
$a
9783319094250$q(paper)
024
7
$a
10.1007/978-3-319-09426-7
$2
doi
035
$a
978-3-319-09426-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
PN1995
072
7
$a
JHBC
$2
bicssc
072
7
$a
SOC027000
$2
bisacsh
082
0 4
$a
791.43015
$2
23
090
$a
PN1995
$b
.M935 2015
245
0 0
$a
Movie analytics
$h
[electronic resource] :
$b
a Hollywood introduction to big data /
$c
by Dominique Haughton ... [et al.].
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2015.
300
$a
viii, 64 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in statistics,
$x
2191-544X
505
0
$a
What do we know about analyzing movie data: section on past literature -- What does "Big Data" mean; the data scientist point of view -- Visualization of very large networks: the co-starring social network -- Movie attendance and trends -- Oscar prediction and prediction markets -- Can we predict Oscars from Twitter and movie review data.
520
$a
Movies will never be the same after you learn how to analyze movie data, including key data mining, text mining and social network analytics concepts. These techniques may then be used in endless other contexts. In the movie application, this topic opens a lively discussion on the current developments in big data from a data science perspective. This book is geared to applied researchers and practitioners and is meant to be practical. The reader will take a hands-on approach, running text mining and social network analyses with software packages covered in the book. These include R, SAS, Knime, Pajek and Gephi. The nitty-gritty of how to build datasets needed for the various analyses will be discussed as well. This includes how to extract suitable Twitter data and create a co-starring network from the IMDB database given memory constraints. The authors also guide the reader through an analysis of movie attendance data via a realistic dataset from France.
650
0
$a
Motion pictures
$x
Philosophy.
$3
181377
650
0
$a
Visual analytics.
$3
285731
650
1 4
$a
Statistics.
$3
182057
650
2 4
$a
Statistics for Social Science, Behavorial Science, Education, Public Policy, and Law.
$3
274394
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
275288
650
2 4
$a
Computer Graphics.
$3
274515
700
1
$a
Haughton, Dominique.
$3
530901
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in statistics.
$3
557771
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-09426-7
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000120120
電子館藏
1圖書
電子書
EB PN1995 M935 2015
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-09426-7
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入