語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Maximum principles and geometric app...
~
Alias, Luis J.
Maximum principles and geometric applications
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Maximum principles and geometric applicationsby Luis J. Alias, Paolo Mastrolia, Marco Rigoli.
作者:
Alias, Luis J.
其他作者:
Mastrolia, Paolo.
出版者:
Cham :Springer International Publishing :2016.
面頁冊數:
xxvii, 570 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Maximum principles (Mathematics)
電子資源:
http://dx.doi.org/10.1007/978-3-319-24337-5
ISBN:
9783319243375$q(electronic bk.)
Maximum principles and geometric applications
Alias, Luis J.
Maximum principles and geometric applications
[electronic resource] /by Luis J. Alias, Paolo Mastrolia, Marco Rigoli. - Cham :Springer International Publishing :2016. - xxvii, 570 p. :ill., digital ;24 cm. - Springer monographs in mathematics,1439-7382. - Springer monographs in mathematics..
A crash course in Riemannian geometry -- The Omori-Yau maximum principle -- New forms of the maximum principle -- Sufficient conditions for the validity of the weak maximum principle -- Miscellany results for submanifolds -- Applications to hypersurfaces -- Hypersurfaces in warped products -- Applications to Ricci Solitons -- Spacelike hypersurfaces in Lorentzian spacetimes.
This monograph presents an introduction to some geometric and analytic aspects of the maximum principle. In doing so, it analyses with great detail the mathematical tools and geometric foundations needed to develop the various new forms that are presented in the first chapters of the book. In particular, a generalization of the Omori-Yau maximum principle to a wide class of differential operators is given, as well as a corresponding weak maximum principle and its equivalent open form and parabolicity as a special stronger formulation of the latter. In the second part, the attention focuses on a wide range of applications, mainly to geometric problems, but also on some analytic (especially PDEs) questions including: the geometry of submanifolds, hypersurfaces in Riemannian and Lorentzian targets, Ricci solitons, Liouville theorems, uniqueness of solutions of Lichnerowicz-type PDEs and so on. Maximum Principles and Geometric Applications is written in an easy style making it accessible to beginners. The reader is guided with a detailed presentation of some topics of Riemannian geometry that are usually not covered in textbooks. Furthermore, many of the results and even proofs of known results are new and lead to the frontiers of a contemporary and active field of research.
ISBN: 9783319243375$q(electronic bk.)
Standard No.: 10.1007/978-3-319-24337-5doiSubjects--Topical Terms:
664223
Maximum principles (Mathematics)
LC Class. No.: QA377
Dewey Class. No.: 515.353
Maximum principles and geometric applications
LDR
:02689nmm a2200325 a 4500
001
483446
003
DE-He213
005
20160825134415.0
006
m d
007
cr nn 008maaau
008
161007s2016 gw s 0 eng d
020
$a
9783319243375$q(electronic bk.)
020
$a
9783319243351$q(paper)
024
7
$a
10.1007/978-3-319-24337-5
$2
doi
035
$a
978-3-319-24337-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA377
072
7
$a
PBKS
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
082
0 4
$a
515.353
$2
23
090
$a
QA377
$b
.A398 2016
100
1
$a
Alias, Luis J.
$3
741016
245
1 0
$a
Maximum principles and geometric applications
$h
[electronic resource] /
$c
by Luis J. Alias, Paolo Mastrolia, Marco Rigoli.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
xxvii, 570 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springer monographs in mathematics,
$x
1439-7382
505
0
$a
A crash course in Riemannian geometry -- The Omori-Yau maximum principle -- New forms of the maximum principle -- Sufficient conditions for the validity of the weak maximum principle -- Miscellany results for submanifolds -- Applications to hypersurfaces -- Hypersurfaces in warped products -- Applications to Ricci Solitons -- Spacelike hypersurfaces in Lorentzian spacetimes.
520
$a
This monograph presents an introduction to some geometric and analytic aspects of the maximum principle. In doing so, it analyses with great detail the mathematical tools and geometric foundations needed to develop the various new forms that are presented in the first chapters of the book. In particular, a generalization of the Omori-Yau maximum principle to a wide class of differential operators is given, as well as a corresponding weak maximum principle and its equivalent open form and parabolicity as a special stronger formulation of the latter. In the second part, the attention focuses on a wide range of applications, mainly to geometric problems, but also on some analytic (especially PDEs) questions including: the geometry of submanifolds, hypersurfaces in Riemannian and Lorentzian targets, Ricci solitons, Liouville theorems, uniqueness of solutions of Lichnerowicz-type PDEs and so on. Maximum Principles and Geometric Applications is written in an easy style making it accessible to beginners. The reader is guided with a detailed presentation of some topics of Riemannian geometry that are usually not covered in textbooks. Furthermore, many of the results and even proofs of known results are new and lead to the frontiers of a contemporary and active field of research.
650
0
$a
Maximum principles (Mathematics)
$3
664223
650
0
$a
Geometry, Riemannian.
$3
191082
650
1 4
$a
Mathematics.
$3
184409
650
2 4
$a
Global Analysis and Analysis on Manifolds.
$3
273786
650
2 4
$a
Partial Differential Equations.
$3
274075
650
2 4
$a
Geometry.
$3
183883
700
1
$a
Mastrolia, Paolo.
$3
569142
700
1
$a
Rigoli, Marco.
$3
569143
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Springer monographs in mathematics.
$3
557774
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-24337-5
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000123283
電子館藏
1圖書
電子書
EB QA377 A398 2016
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-24337-5
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入