語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
A fixed-point Farrago
~
Shapiro, Joel H.
A fixed-point Farrago
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
A fixed-point Farragoby Joel H. Shapiro.
作者:
Shapiro, Joel H.
出版者:
Cham :Springer International Publishing :2016.
面頁冊數:
xiv, 221 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Fixed point theory.
電子資源:
http://dx.doi.org/10.1007/978-3-319-27978-7
ISBN:
9783319279787$q(electronic bk.)
A fixed-point Farrago
Shapiro, Joel H.
A fixed-point Farrago
[electronic resource] /by Joel H. Shapiro. - Cham :Springer International Publishing :2016. - xiv, 221 p. :ill., digital ;24 cm. - Universitext,0172-5939. - Universitext..
1. From Newton to Google -- 2. Brouwer in Dimension Two -- 3. Contraction Mappings -- 4. Brouwer in Higher Dimensions -- 5. Nash Equilibrium -- 6. Nash's "one-page proof" -- 7. The Schauder Fixed-Point Theorem -- 8. The Invariant Subspace Problem -- 9. The Markov-Kakutani Theorem -- 10. The Meaning of Means -- 11. Paradoxical Decompositions -- 12. Fixed Points for Non-commuting Map Families -- 13. Beyond Markov-Kakutani -- A. Advanced Calculus -- B. Compact Metric Spaces -- C. Convex Sets and Normed Spaces -- D. Euclidean Isometries -- E. A Little Group Theory, a Little Set Theory -- References -- Index -- List of Symbols.
This text provides an introduction to some of the best-known fixed-point theorems, with an emphasis on their interactions with topics in analysis. The level of exposition increases gradually throughout the book, building from a basic requirement of undergraduate proficiency to graduate-level sophistication. Appendices provide an introduction to (or refresher on) some of the prerequisite material and exercises are integrated into the text, contributing to the volume's ability to be used as a self-contained text. Readers will find the presentation especially useful for independent study or as a supplement to a graduate course in fixed-point theory. The material is split into four parts: the first introduces the Banach Contraction-Mapping Principle and the Brouwer Fixed-Point Theorem, along with a selection of interesting applications; the second focuses on Brouwer's theorem and its application to John Nash's work; the third applies Brouwer's theorem to spaces of infinite dimension; and the fourth rests on the work of Markov, Kakutani, and Ryll-Nardzewski surrounding fixed points for families of affine maps.
ISBN: 9783319279787$q(electronic bk.)
Standard No.: 10.1007/978-3-319-27978-7doiSubjects--Topical Terms:
206244
Fixed point theory.
LC Class. No.: QA329.9
Dewey Class. No.: 515.7248
A fixed-point Farrago
LDR
:02698nmm a2200325 a 4500
001
489408
003
DE-He213
005
20161101152552.0
006
m d
007
cr nn 008maaau
008
161213s2016 gw s 0 eng d
020
$a
9783319279787$q(electronic bk.)
020
$a
9783319279763$q(paper)
024
7
$a
10.1007/978-3-319-27978-7
$2
doi
035
$a
978-3-319-27978-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA329.9
072
7
$a
PBK
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
082
0 4
$a
515.7248
$2
23
090
$a
QA329.9
$b
.S529 2016
100
1
$a
Shapiro, Joel H.
$3
747894
245
1 2
$a
A fixed-point Farrago
$h
[electronic resource] /
$c
by Joel H. Shapiro.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
xiv, 221 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Universitext,
$x
0172-5939
505
0
$a
1. From Newton to Google -- 2. Brouwer in Dimension Two -- 3. Contraction Mappings -- 4. Brouwer in Higher Dimensions -- 5. Nash Equilibrium -- 6. Nash's "one-page proof" -- 7. The Schauder Fixed-Point Theorem -- 8. The Invariant Subspace Problem -- 9. The Markov-Kakutani Theorem -- 10. The Meaning of Means -- 11. Paradoxical Decompositions -- 12. Fixed Points for Non-commuting Map Families -- 13. Beyond Markov-Kakutani -- A. Advanced Calculus -- B. Compact Metric Spaces -- C. Convex Sets and Normed Spaces -- D. Euclidean Isometries -- E. A Little Group Theory, a Little Set Theory -- References -- Index -- List of Symbols.
520
$a
This text provides an introduction to some of the best-known fixed-point theorems, with an emphasis on their interactions with topics in analysis. The level of exposition increases gradually throughout the book, building from a basic requirement of undergraduate proficiency to graduate-level sophistication. Appendices provide an introduction to (or refresher on) some of the prerequisite material and exercises are integrated into the text, contributing to the volume's ability to be used as a self-contained text. Readers will find the presentation especially useful for independent study or as a supplement to a graduate course in fixed-point theory. The material is split into four parts: the first introduces the Banach Contraction-Mapping Principle and the Brouwer Fixed-Point Theorem, along with a selection of interesting applications; the second focuses on Brouwer's theorem and its application to John Nash's work; the third applies Brouwer's theorem to spaces of infinite dimension; and the fourth rests on the work of Markov, Kakutani, and Ryll-Nardzewski surrounding fixed points for families of affine maps.
650
0
$a
Fixed point theory.
$3
206244
650
1 4
$a
Mathematics.
$3
184409
650
2 4
$a
Analysis.
$3
273775
650
2 4
$a
Numerical Analysis.
$3
275681
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Universitext.
$3
558272
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-27978-7
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000126919
電子館藏
1圖書
電子書
EB QA329.9 S529 2016
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-27978-7
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入