語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Machine learning for microbial pheno...
~
Feldbauer, Roman.
Machine learning for microbial phenotype prediction
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Machine learning for microbial phenotype predictionby Roman Feldbauer.
作者:
Feldbauer, Roman.
出版者:
Wiesbaden :Springer Fachmedien Wiesbaden :2016.
面頁冊數:
xiii, 110 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Artificial intelligenceBiological applications.
電子資源:
http://dx.doi.org/10.1007/978-3-658-14319-0
ISBN:
9783658143190$q(electronic bk.)
Machine learning for microbial phenotype prediction
Feldbauer, Roman.
Machine learning for microbial phenotype prediction
[electronic resource] /by Roman Feldbauer. - Wiesbaden :Springer Fachmedien Wiesbaden :2016. - xiii, 110 p. :ill., digital ;24 cm. - BestMasters. - BestMasters..
Microbial Genotypes and Phenotypes -- Basics of Machine Learning -- Phenotype Prediction Packages -- A Model for Intracellular Lifestyle.
This thesis presents a scalable, generic methodology for microbial phenotype prediction based on supervised machine learning, several models for biological and ecological traits of high relevance, and the deployment in metagenomic datasets. The results suggest that the presented prediction tool can be used to automatically annotate phenotypes in near-complete microbial genome sequences, as generated in large numbers in current metagenomic studies. Unraveling relationships between a living organism's genetic information and its observable traits is a central biological problem. Phenotype prediction facilitated by machine learning techniques will be a major step forward to creating biological knowledge from big data. Contents Microbial Genotypes and Phenotypes Basics of Machine Learning Phenotype Prediction Packages A Model for Intracellular Lifestyle Target Groups Teachers and students in the fields of bioinformatics, molecular biology and microbiology Executives and specialists in the field of microbiology, computational biology and machine learning About the Author Roman Feldbauer is currently employed at the Austrian Research Institute for Artificial Intelligence (OFAI) and PhD student at the University of Vienna. His research interests are machine learning, data science, bioinformatics, comparative genomics and neuroscience. In one of his current projects he investigates large biological databases in regard to the "curse of dimensionality".
ISBN: 9783658143190$q(electronic bk.)
Standard No.: 10.1007/978-3-658-14319-0doiSubjects--Topical Terms:
238843
Artificial intelligence
--Biological applications.
LC Class. No.: QH324.25
Dewey Class. No.: 570.28563
Machine learning for microbial phenotype prediction
LDR
:02605nmm a2200337 a 4500
001
490237
003
DE-He213
005
20161114111522.0
006
m d
007
cr nn 008maaau
008
170118s2016 gw s 0 eng d
020
$a
9783658143190$q(electronic bk.)
020
$a
9783658143183$q(paper)
024
7
$a
10.1007/978-3-658-14319-0
$2
doi
035
$a
978-3-658-14319-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QH324.25
072
7
$a
PSD
$2
bicssc
072
7
$a
UB
$2
bicssc
072
7
$a
SCI056000
$2
bisacsh
082
0 4
$a
570.28563
$2
23
090
$a
QH324.25
$b
.F312 2016
100
1
$a
Feldbauer, Roman.
$3
749570
245
1 0
$a
Machine learning for microbial phenotype prediction
$h
[electronic resource] /
$c
by Roman Feldbauer.
260
$a
Wiesbaden :
$b
Springer Fachmedien Wiesbaden :
$b
Imprint: Springer Spektrum,
$c
2016.
300
$a
xiii, 110 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
BestMasters
505
0
$a
Microbial Genotypes and Phenotypes -- Basics of Machine Learning -- Phenotype Prediction Packages -- A Model for Intracellular Lifestyle.
520
$a
This thesis presents a scalable, generic methodology for microbial phenotype prediction based on supervised machine learning, several models for biological and ecological traits of high relevance, and the deployment in metagenomic datasets. The results suggest that the presented prediction tool can be used to automatically annotate phenotypes in near-complete microbial genome sequences, as generated in large numbers in current metagenomic studies. Unraveling relationships between a living organism's genetic information and its observable traits is a central biological problem. Phenotype prediction facilitated by machine learning techniques will be a major step forward to creating biological knowledge from big data. Contents Microbial Genotypes and Phenotypes Basics of Machine Learning Phenotype Prediction Packages A Model for Intracellular Lifestyle Target Groups Teachers and students in the fields of bioinformatics, molecular biology and microbiology Executives and specialists in the field of microbiology, computational biology and machine learning About the Author Roman Feldbauer is currently employed at the Austrian Research Institute for Artificial Intelligence (OFAI) and PhD student at the University of Vienna. His research interests are machine learning, data science, bioinformatics, comparative genomics and neuroscience. In one of his current projects he investigates large biological databases in regard to the "curse of dimensionality".
650
0
$a
Artificial intelligence
$x
Biological applications.
$3
238843
650
0
$a
Machine learning.
$3
188639
650
0
$a
Comparative genomics
$x
Data processing.
$3
749571
650
0
$a
Phenotype.
$3
265390
650
1 4
$a
Life Sciences.
$3
273679
650
2 4
$a
Bioinformatics.
$3
194415
650
2 4
$a
Mathematical and Computational Biology.
$3
514442
650
2 4
$a
Microbiology.
$3
192943
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
BestMasters.
$3
676593
856
4 0
$u
http://dx.doi.org/10.1007/978-3-658-14319-0
950
$a
Biomedical and Life Sciences (Springer-11642)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000127395
電子館藏
1圖書
電子書
EB QH324.25 F312 2016
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-658-14319-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入