語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Stochastic porous media equations
~
Barbu, Viorel.
Stochastic porous media equations
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Stochastic porous media equationsby Viorel Barbu, Giuseppe Da Prato, Michael Rockner.
作者:
Barbu, Viorel.
其他作者:
Da Prato, Giuseppe.
出版者:
Cham :Springer International Publishing :2016.
面頁冊數:
ix, 202 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Stochastic processes.
電子資源:
http://dx.doi.org/10.1007/978-3-319-41069-2
ISBN:
9783319410692$q(electronic bk.)
Stochastic porous media equations
Barbu, Viorel.
Stochastic porous media equations
[electronic resource] /by Viorel Barbu, Giuseppe Da Prato, Michael Rockner. - Cham :Springer International Publishing :2016. - ix, 202 p. :ill., digital ;24 cm. - Lecture notes in mathematics,21630075-8434 ;. - Lecture notes in mathematics ;2035..
Foreword -- Preface -- Introduction -- Equations with Lipschitz nonlinearities -- Equations with maximal monotone nonlinearities -- Variational approach to stochastic porous media equations -- L1-based approach to existence theory for stochastic porous media equations -- The stochastic porous media equations in Rd -- Transition semigroups and ergodicity of invariant measures -- Kolmogorov equations -- A Two analytical inequalities -- Bibliography -- Glossary -- Translator's note -- Index.
Focusing on stochastic porous media equations, this book places an emphasis on existence theorems, asymptotic behavior and ergodic properties of the associated transition semigroup. Stochastic perturbations of the porous media equation have reviously been considered by physicists, but rigorous mathematical existence results have only recently been found. The porous media equation models a number of different physical phenomena, including the flow of an ideal gas and the diffusion of a compressible fluid through porous media, and also thermal propagation in plasma and plasma radiation. Another important application is to a model of the standard self-organized criticality process, called the "sand-pile model" or the "Bak-Tang-Wiesenfeld model". The book will be of interest to PhD students and researchers in mathematics, physics and biology.
ISBN: 9783319410692$q(electronic bk.)
Standard No.: 10.1007/978-3-319-41069-2doiSubjects--Topical Terms:
181874
Stochastic processes.
LC Class. No.: QA274.2 / .B365 2016
Dewey Class. No.: 519.23
Stochastic porous media equations
LDR
:02396nmm a2200337 a 4500
001
497590
003
DE-He213
005
20160930171553.0
006
m d
007
cr nn 008maaau
008
170420s2016 gw s 0 eng d
020
$a
9783319410692$q(electronic bk.)
020
$a
9783319410685$q(paper)
024
7
$a
10.1007/978-3-319-41069-2
$2
doi
035
$a
978-3-319-41069-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA274.2
$b
.B365 2016
072
7
$a
PBT
$2
bicssc
072
7
$a
PBWL
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
082
0 4
$a
519.23
$2
23
090
$a
QA274.2
$b
.B241 2016
100
1
$a
Barbu, Viorel.
$3
485848
245
1 0
$a
Stochastic porous media equations
$h
[electronic resource] /
$c
by Viorel Barbu, Giuseppe Da Prato, Michael Rockner.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
ix, 202 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in mathematics,
$x
0075-8434 ;
$v
2163
505
0
$a
Foreword -- Preface -- Introduction -- Equations with Lipschitz nonlinearities -- Equations with maximal monotone nonlinearities -- Variational approach to stochastic porous media equations -- L1-based approach to existence theory for stochastic porous media equations -- The stochastic porous media equations in Rd -- Transition semigroups and ergodicity of invariant measures -- Kolmogorov equations -- A Two analytical inequalities -- Bibliography -- Glossary -- Translator's note -- Index.
520
$a
Focusing on stochastic porous media equations, this book places an emphasis on existence theorems, asymptotic behavior and ergodic properties of the associated transition semigroup. Stochastic perturbations of the porous media equation have reviously been considered by physicists, but rigorous mathematical existence results have only recently been found. The porous media equation models a number of different physical phenomena, including the flow of an ideal gas and the diffusion of a compressible fluid through porous media, and also thermal propagation in plasma and plasma radiation. Another important application is to a model of the standard self-organized criticality process, called the "sand-pile model" or the "Bak-Tang-Wiesenfeld model". The book will be of interest to PhD students and researchers in mathematics, physics and biology.
650
0
$a
Stochastic processes.
$3
181874
650
0
$a
Differential equations, Partial.
$3
189753
650
1 4
$a
Mathematics.
$3
184409
650
2 4
$a
Probability Theory and Stochastic Processes.
$3
274061
650
2 4
$a
Partial Differential Equations.
$3
274075
650
2 4
$a
Fluid- and Aerodynamics.
$3
376797
700
1
$a
Da Prato, Giuseppe.
$3
209307
700
1
$a
Rockner, Michael.
$3
467786
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Lecture notes in mathematics ;
$v
2035.
$3
557764
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-41069-2
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000133324
電子館藏
1圖書
電子書
EB QA274.2 B241 2016
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-41069-2
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入