語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Ricci flow and geometric application...
~
Boileau, Michel.
Ricci flow and geometric applicationsCetraro, Italy 2010 /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Ricci flow and geometric applicationsby Michel Boileau ... [et al.].
其他題名:
Cetraro, Italy 2010 /
其他作者:
Boileau, Michel.
出版者:
Cham :Springer International Publishing :2016.
面頁冊數:
xi, 136 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Ricci flow.
電子資源:
http://dx.doi.org/10.1007/978-3-319-42351-7
ISBN:
9783319423517$q(electronic bk.)
Ricci flow and geometric applicationsCetraro, Italy 2010 /
Ricci flow and geometric applications
Cetraro, Italy 2010 /[electronic resource] :by Michel Boileau ... [et al.]. - Cham :Springer International Publishing :2016. - xi, 136 p. :ill., digital ;24 cm. - Lecture notes in mathematics,21660075-8434 ;. - Lecture notes in mathematics ;2035..
Preface -- The Differentiable Sphere Theorem (after S. Brendle and R. Schoen) -- Thick/Thin Decomposition of three-manifolds and the Geometrisation Conjecture -- Singularities of three-dimensional Ricci flows -- Notes on Kahler-Ricci flow.
Presenting some impressive recent achievements in differential geometry and topology, this volume focuses on results obtained using techniques based on Ricci flow. These ideas are at the core of the study of differentiable manifolds. Several very important open problems and conjectures come from this area and the techniques described herein are used to face and solve some of them. The book's four chapters are based on lectures given by leading researchers in the field of geometric analysis and low-dimensional geometry/topology, respectively offering an introduction to: the differentiable sphere theorem (G. Besson), the geometrization of 3-manifolds (M. Boileau), the singularities of 3-dimensional Ricci flows (C. Sinestrari), and Kahler-Ricci flow (G. Tian) The lectures will be particularly valuable to young researchers interested in differential manifolds.
ISBN: 9783319423517$q(electronic bk.)
Standard No.: 10.1007/978-3-319-42351-7doiSubjects--Topical Terms:
359870
Ricci flow.
LC Class. No.: QA670
Dewey Class. No.: 516.362
Ricci flow and geometric applicationsCetraro, Italy 2010 /
LDR
:02123nmm a2200325 a 4500
001
497592
003
DE-He213
005
20160909205220.0
006
m d
007
cr nn 008maaau
008
170420s2016 gw s 0 eng d
020
$a
9783319423517$q(electronic bk.)
020
$a
9783319423500$q(paper)
024
7
$a
10.1007/978-3-319-42351-7
$2
doi
035
$a
978-3-319-42351-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA670
072
7
$a
PBMP
$2
bicssc
072
7
$a
MAT012030
$2
bisacsh
082
0 4
$a
516.362
$2
23
090
$a
QA670
$b
.R491 2016
245
0 0
$a
Ricci flow and geometric applications
$h
[electronic resource] :
$b
Cetraro, Italy 2010 /
$c
by Michel Boileau ... [et al.].
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2016.
300
$a
xi, 136 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Lecture notes in mathematics,
$x
0075-8434 ;
$v
2166
505
0
$a
Preface -- The Differentiable Sphere Theorem (after S. Brendle and R. Schoen) -- Thick/Thin Decomposition of three-manifolds and the Geometrisation Conjecture -- Singularities of three-dimensional Ricci flows -- Notes on Kahler-Ricci flow.
520
$a
Presenting some impressive recent achievements in differential geometry and topology, this volume focuses on results obtained using techniques based on Ricci flow. These ideas are at the core of the study of differentiable manifolds. Several very important open problems and conjectures come from this area and the techniques described herein are used to face and solve some of them. The book's four chapters are based on lectures given by leading researchers in the field of geometric analysis and low-dimensional geometry/topology, respectively offering an introduction to: the differentiable sphere theorem (G. Besson), the geometrization of 3-manifolds (M. Boileau), the singularities of 3-dimensional Ricci flows (C. Sinestrari), and Kahler-Ricci flow (G. Tian) The lectures will be particularly valuable to young researchers interested in differential manifolds.
650
0
$a
Ricci flow.
$3
359870
650
0
$a
Geometry, Differential.
$3
182610
650
1 4
$a
Mathematics.
$3
184409
650
2 4
$a
Differential Geometry.
$3
273785
650
2 4
$a
Partial Differential Equations.
$3
274075
700
1
$a
Boileau, Michel.
$3
760317
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Lecture notes in mathematics ;
$v
2035.
$3
557764
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-42351-7
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000133326
電子館藏
1圖書
電子書
EB QA670 R491 2016
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-42351-7
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入