語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
The Monge-Ampere equation
~
Gutierrez, Cristian E.
The Monge-Ampere equation
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
The Monge-Ampere equationby Cristian E. Gutierrez.
作者:
Gutierrez, Cristian E.
出版者:
Cham :Springer International Publishing :2016.
面頁冊數:
xiv, 216 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Monge-Ampere equations.
電子資源:
http://dx.doi.org/10.1007/978-3-319-43374-5
ISBN:
9783319433745$q(electronic bk.)
The Monge-Ampere equation
Gutierrez, Cristian E.
The Monge-Ampere equation
[electronic resource] /by Cristian E. Gutierrez. - 2nd ed. - Cham :Springer International Publishing :2016. - xiv, 216 p. :ill., digital ;24 cm. - Progress in nonlinear differential equations and their applications,v.891421-1750 ;. - Progress in nonlinear differential equations and their applications ;v.83..
Now in its second edition, this monograph explores the Monge-Ampere equation and the latest advances in its study and applications. It provides an essentially self-contained systematic exposition of the theory of weak solutions, including regularity results by L. A. Caffarelli. The geometric aspects of this theory are stressed using techniques from harmonic analysis, such as covering lemmas and set decompositions. An effort is made to present complete proofs of all theorems, and examples and exercises are offered to further illustrate important concepts. Some of the topics considered include generalized solutions, non-divergence equations, cross sections, and convex solutions. New to this edition is a chapter on the linearized Monge-Ampere equation and a chapter on interior Holder estimates for second derivatives. Bibliographic notes, updated and expanded from the first edition, are included at the end of every chapter for further reading on Monge-Ampere-type equations and their diverse applications in the areas of differential geometry, the calculus of variations, optimization problems, optimal mass transport, and geometric optics. Both researchers and graduate students working on nonlinear differential equations and their applications will find this to be a useful and concise resource.
ISBN: 9783319433745$q(electronic bk.)
Standard No.: 10.1007/978-3-319-43374-5doiSubjects--Topical Terms:
560018
Monge-Ampere equations.
LC Class. No.: QA377
Dewey Class. No.: 515.353
The Monge-Ampere equation
LDR
:02330nmm a2200325 a 4500
001
498450
003
DE-He213
005
20161022141348.0
006
m d
007
cr nn 008maaau
008
170511s2016 gw s 0 eng d
020
$a
9783319433745$q(electronic bk.)
020
$a
9783319433721$q(paper)
024
7
$a
10.1007/978-3-319-43374-5
$2
doi
035
$a
978-3-319-43374-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA377
072
7
$a
PBKJ
$2
bicssc
072
7
$a
MAT007000
$2
bisacsh
082
0 4
$a
515.353
$2
23
090
$a
QA377
$b
.G984 2016
100
1
$a
Gutierrez, Cristian E.
$3
761599
245
1 4
$a
The Monge-Ampere equation
$h
[electronic resource] /
$c
by Cristian E. Gutierrez.
250
$a
2nd ed.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Birkhauser,
$c
2016.
300
$a
xiv, 216 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Progress in nonlinear differential equations and their applications,
$x
1421-1750 ;
$v
v.89
520
$a
Now in its second edition, this monograph explores the Monge-Ampere equation and the latest advances in its study and applications. It provides an essentially self-contained systematic exposition of the theory of weak solutions, including regularity results by L. A. Caffarelli. The geometric aspects of this theory are stressed using techniques from harmonic analysis, such as covering lemmas and set decompositions. An effort is made to present complete proofs of all theorems, and examples and exercises are offered to further illustrate important concepts. Some of the topics considered include generalized solutions, non-divergence equations, cross sections, and convex solutions. New to this edition is a chapter on the linearized Monge-Ampere equation and a chapter on interior Holder estimates for second derivatives. Bibliographic notes, updated and expanded from the first edition, are included at the end of every chapter for further reading on Monge-Ampere-type equations and their diverse applications in the areas of differential geometry, the calculus of variations, optimization problems, optimal mass transport, and geometric optics. Both researchers and graduate students working on nonlinear differential equations and their applications will find this to be a useful and concise resource.
650
0
$a
Monge-Ampere equations.
$3
560018
650
1 4
$a
Mathematics.
$3
184409
650
2 4
$a
Partial Differential Equations.
$3
274075
650
2 4
$a
Differential Geometry.
$3
273785
650
2 4
$a
Mathematical Applications in the Physical Sciences.
$3
522718
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Progress in nonlinear differential equations and their applications ;
$v
v.83.
$3
558793
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-43374-5
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000133885
電子館藏
1圖書
電子書
EB QA377 G984 2016
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-43374-5
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入