語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Multisensor Concealed Weapon Detecti...
~
University of Windsor (Canada).
Multisensor Concealed Weapon Detection Using the Image Fusion Approach.
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Multisensor Concealed Weapon Detection Using the Image Fusion Approach.
作者:
Xu, Tuzhi.
出版者:
Ann Arbor : ProQuest Dissertations & Theses, 2016
面頁冊數:
84 p.
附註:
Source: Masters Abstracts International, Volume: 55-05.
附註:
Adviser: Jonathan Wu.
Contained By:
Masters Abstracts International55-05(E).
標題:
Electrical engineering.
電子資源:
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10125917
ISBN:
9781339839752
Multisensor Concealed Weapon Detection Using the Image Fusion Approach.
Xu, Tuzhi.
Multisensor Concealed Weapon Detection Using the Image Fusion Approach.
- Ann Arbor : ProQuest Dissertations & Theses, 2016 - 84 p.
Source: Masters Abstracts International, Volume: 55-05.
Thesis (M.A.Sc.)--University of Windsor (Canada), 2016.
Detection of concealed weapons is an increasingly important problem for both military and police since global terrorism and crime have grown as threats over the years. This work presents two image fusion algorithms, one at pixel level and another at feature level, for efficient concealed weapon detection application. Both the algorithms presented in this work are based on the double-density dual-tree complex wavelet transform (DDDTCWT). In the pixel level fusion scheme, the fusion of low frequency band coefficients is determined by the local contrast, while the high frequency band fusion rule is developed with consideration of both texture feature of the human visual system (HVS) and local energy basis. In the feature level fusion algorithm, features are exacted using Gaussian Mixture model (GMM) based multiscale segmentation approach and the fusion rules are developed based on region activity measurement. Experiment results demonstrate the robustness and efficiency of the proposed algorithms.
ISBN: 9781339839752Subjects--Topical Terms:
454503
Electrical engineering.
Multisensor Concealed Weapon Detection Using the Image Fusion Approach.
LDR
:01873nmm a2200277 4500
001
502091
005
20170619070724.5
008
170818s2016 ||||||||||||||||| ||eng d
020
$a
9781339839752
035
$a
(MiAaPQ)AAI10125917
035
$a
AAI10125917
040
$a
MiAaPQ
$c
MiAaPQ
100
1
$a
Xu, Tuzhi.
$3
766088
245
1 0
$a
Multisensor Concealed Weapon Detection Using the Image Fusion Approach.
260
$a
Ann Arbor :
$b
ProQuest Dissertations & Theses,
$c
2016
300
$a
84 p.
500
$a
Source: Masters Abstracts International, Volume: 55-05.
500
$a
Adviser: Jonathan Wu.
502
$a
Thesis (M.A.Sc.)--University of Windsor (Canada), 2016.
520
$a
Detection of concealed weapons is an increasingly important problem for both military and police since global terrorism and crime have grown as threats over the years. This work presents two image fusion algorithms, one at pixel level and another at feature level, for efficient concealed weapon detection application. Both the algorithms presented in this work are based on the double-density dual-tree complex wavelet transform (DDDTCWT). In the pixel level fusion scheme, the fusion of low frequency band coefficients is determined by the local contrast, while the high frequency band fusion rule is developed with consideration of both texture feature of the human visual system (HVS) and local energy basis. In the feature level fusion algorithm, features are exacted using Gaussian Mixture model (GMM) based multiscale segmentation approach and the fusion rules are developed based on region activity measurement. Experiment results demonstrate the robustness and efficiency of the proposed algorithms.
590
$a
School code: 0115.
650
4
$a
Electrical engineering.
$3
454503
690
$a
0544
710
2
$a
University of Windsor (Canada).
$b
Electrical Engineering.
$3
730281
773
0
$t
Masters Abstracts International
$g
55-05(E).
790
$a
0115
791
$a
M.A.Sc.
792
$a
2016
793
$a
English
856
4 0
$u
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10125917
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000135029
電子館藏
1圖書
學位論文
TH 2016
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://pqdd.sinica.edu.tw/twdaoapp/servlet/advanced?query=10125917
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入