語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Diffractive optics for thin-film sil...
~
Schuster, Christian Stefano.
Diffractive optics for thin-film silicon solar cells
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Diffractive optics for thin-film silicon solar cellsby Christian Stefano Schuster.
作者:
Schuster, Christian Stefano.
出版者:
Cham :Springer International Publishing :2017.
面頁冊數:
xx, 114 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Optics.
電子資源:
http://dx.doi.org/10.1007/978-3-319-44278-5
ISBN:
9783319442785$q(electronic bk.)
Diffractive optics for thin-film silicon solar cells
Schuster, Christian Stefano.
Diffractive optics for thin-film silicon solar cells
[electronic resource] /by Christian Stefano Schuster. - Cham :Springer International Publishing :2017. - xx, 114 p. :ill., digital ;24 cm. - Springer theses,2190-5053. - Springer theses..
Introduction -- Nanostructures for Enhanced Light-Trapping in Thin-Film Silicon Solar Cells -- Fabrication and Characterisation of Diffractive Nanostructures -- Achievements -- Conclusions and Outlook.
This thesis introduces a figure of merit for light trapping with photonic nanostructures and shows how different light trapping methods compare, irrespective of material, absorber thickness or type of nanostructure. It provides an overview of the essential aspects of light trapping, offering a solid basis for future designs. Light trapping with photonic nanostructures is a powerful method of increasing the absorption in thin film solar cells. Many light trapping methods have been studied, but to date there has been no comprehensive figure of merit to compare these different methods quantitatively. This comparison allows us to establish important design rules for highly performing structures; one such rule is the structuring of the absorber layer from both sides, for which the authors introduce a novel and simple layer-transfer technique. A closely related issue is the question of plasmonic vs. dielectric nanostructures; the authors present an experimental demonstration, aided by a detailed theoretical assessment, highlighting the importance of considering the multipass nature of light trapping in a thin film, which is an essential effect that has been neglected in previous work and which allows us to quantify the parasitic losses.
ISBN: 9783319442785$q(electronic bk.)
Standard No.: 10.1007/978-3-319-44278-5doiSubjects--Topical Terms:
204142
Optics.
LC Class. No.: QC355.3
Dewey Class. No.: 621.36
Diffractive optics for thin-film silicon solar cells
LDR
:02435nmm a2200325 a 4500
001
505026
003
DE-He213
005
20160926175209.0
006
m d
007
cr nn 008maaau
008
171030s2017 gw s 0 eng d
020
$a
9783319442785$q(electronic bk.)
020
$a
9783319442778$q(paper)
024
7
$a
10.1007/978-3-319-44278-5
$2
doi
035
$a
978-3-319-44278-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QC355.3
072
7
$a
TTBL
$2
bicssc
072
7
$a
TEC019000
$2
bisacsh
082
0 4
$a
621.36
$2
23
090
$a
QC355.3
$b
.S395 2017
100
1
$a
Schuster, Christian Stefano.
$3
770126
245
1 0
$a
Diffractive optics for thin-film silicon solar cells
$h
[electronic resource] /
$c
by Christian Stefano Schuster.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2017.
300
$a
xx, 114 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springer theses,
$x
2190-5053
505
0
$a
Introduction -- Nanostructures for Enhanced Light-Trapping in Thin-Film Silicon Solar Cells -- Fabrication and Characterisation of Diffractive Nanostructures -- Achievements -- Conclusions and Outlook.
520
$a
This thesis introduces a figure of merit for light trapping with photonic nanostructures and shows how different light trapping methods compare, irrespective of material, absorber thickness or type of nanostructure. It provides an overview of the essential aspects of light trapping, offering a solid basis for future designs. Light trapping with photonic nanostructures is a powerful method of increasing the absorption in thin film solar cells. Many light trapping methods have been studied, but to date there has been no comprehensive figure of merit to compare these different methods quantitatively. This comparison allows us to establish important design rules for highly performing structures; one such rule is the structuring of the absorber layer from both sides, for which the authors introduce a novel and simple layer-transfer technique. A closely related issue is the question of plasmonic vs. dielectric nanostructures; the authors present an experimental demonstration, aided by a detailed theoretical assessment, highlighting the importance of considering the multipass nature of light trapping in a thin film, which is an essential effect that has been neglected in previous work and which allows us to quantify the parasitic losses.
650
0
$a
Optics.
$3
204142
650
0
$a
Photonics
$x
Materials.
$3
219723
650
0
$a
Energy harvesting.
$3
491439
650
0
$a
Optical materials.
$3
203157
650
0
$a
Diffraction.
$3
194903
650
0
$a
Photovoltaic cells.
$3
215308
650
0
$a
Solar cells.
$3
184745
650
1 4
$a
Physics.
$3
179414
650
2 4
$a
Optics, Lasers, Photonics, Optical Devices.
$3
758151
650
2 4
$a
Energy Harvesting.
$3
557545
650
2 4
$a
Optical and Electronic Materials.
$3
274099
650
2 4
$a
Nanoscale Science and Technology.
$3
489389
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Springer theses.
$3
557607
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-44278-5
950
$a
Physics and Astronomy (Springer-11651)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000135961
電子館藏
1圖書
電子書
EB QC355.3 S395 2017
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-44278-5
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入