語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Machine learning control - taming no...
~
Brunton, Steven L.
Machine learning control - taming nonlinear dynamics and turbulence
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Machine learning control - taming nonlinear dynamics and turbulenceby Thomas Duriez, Steven L. Brunton, Bernd R. Noack.
作者:
Duriez, Thomas.
其他作者:
Brunton, Steven L.
出版者:
Cham :Springer International Publishing :2017.
面頁冊數:
xx, 211 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
標題:
Feedback control systems.
電子資源:
http://dx.doi.org/10.1007/978-3-319-40624-4
ISBN:
9783319406244$q(electronic bk.)
Machine learning control - taming nonlinear dynamics and turbulence
Duriez, Thomas.
Machine learning control - taming nonlinear dynamics and turbulence
[electronic resource] /by Thomas Duriez, Steven L. Brunton, Bernd R. Noack. - Cham :Springer International Publishing :2017. - xx, 211 p. :ill. (some col.), digital ;24 cm. - Fluid mechanics and its applications,v.1160926-5112 ;. - Fluid mechanics and its applications ;v.98..
Preface -- 1 Introduction -- 1.1 Feedback in engineering and living systems -- 1.2 Benefits of feedback control -- 1.3 Challenges of feedback control -- 1.4 Feedback turbulence control is a grand challenge problem -- 1.5 Nature teaches us the control design -- 1.6 Outline of the book -- 1.7 Exercises -- 2 Machine learning control (MLC) -- 2.1 Methods of machine learning -- 2.2 MLC with genetic programming -- 2.3 Examples -- 2.4 Exercises -- 2.5 Suggested reading -- 2.6 Interview with Professor Marc Schoenauer -- 3 Methods of linear control theory -- 3.1 Linear systems -- 3.2 Full-state feedback -- Linear quadratic regulator (LQR) -- 3.3 Sensor-based state estimation -- Kalman filtering -- 3.4 Sensor-based feedback -- Linear quadratic Gaussian (LQG) -- 3.5 System Identification and Model Reduction -- 3.6 Exercises -- 3.7 Suggested reading -- 4 Benchmarking MLC against linear control -- 4.1 Comparison of MLC with LQR on a linear oscillator -- 4.2 Comparison of MLC with Kalman filter on a noisy linear oscillator -- 4.3 Comparison of MLC with LQG for sensor-based feedback -- 4.4 Modifications for small nonlinearity -- 4.5 Exercises -- 4.6 Interview with Professor Shervin Bagheri -- 5 Taming nonlinear dynamics with MLC -- 5.1 Generalized mean-field system -- 5.2 Machine learning control -- 5.3 Derivation outline for the generalized mean-field model -- 5.4 Alternative control approaches -- 5.5 Exercises -- 5.6 Suggested reading -- 5.7 Interview with Professor Mark N. Glauser -- 6 Taming real world flow control experiments with MLC -- 6.1 Separation control over a backward-facing step -- 6.2 Separation control of turbulent boundary layers -- 6.3 Control of mixing layer growth -- 6.4 Alternative model-based control approaches -- 6.5 Implementation of MLC in experiments -- 6.6 Suggested reading -- 6.7 Interview with Professor David Williams -- 7 MLC tactics and strategy -- 7.1 The ideal flow control experiment -- 7.2 Desiderata of the control problem -- from the definition to hardware choices -- 7.3 Time scales of MLC -- 7.4 MLC parameters and convergence -- 7.5 The imperfect experiment -- 8 Future developments -- 8.1 Methodological advances of MLC -- 8.2 System-reduction techniques for MLC -- Coping with high-dimensional input and output -- 8.3 Future applications of MLC -- 8.4 Exercises -- 8.5 Interview with Professor Belinda Batten -- Glossary -- Symbols -- Abbreviations -- Matlab® Code: OpenMLC -- Bibliography -- Index.
This is the first book on a generally applicable control strategy for turbulence and other complex nonlinear systems. The approach of the book employs powerful methods of machine learning for optimal nonlinear control laws. This machine learning control (MLC) is motivated and detailed in Chapters 1 and 2. In Chapter 3, methods of linear control theory are reviewed. In Chapter 4, MLC is shown to reproduce known optimal control laws for linear dynamics (LQR, LQG) In Chapter 5, MLC detects and exploits a strongly nonlinear actuation mechanism of a low-dimensional dynamical system when linear control methods are shown to fail. Experimental control demonstrations from a laminar shear-layer to turbulent boundary-layers are reviewed in Chapter 6, followed by general good practices for experiments in Chapter 7. The book concludes with an outlook on the vast future applications of MLC in Chapter 8. Matlab codes are provided for easy reproducibility of the presented results. The book includes interviews with leading researchers in turbulence control (S. Bagheri, B. Batten, M. Glauser, D. Williams) and machine learning (M. Schoenauer) for a broader perspective. All chapters have exercises and supplemental videos will be available through YouTube.
ISBN: 9783319406244$q(electronic bk.)
Standard No.: 10.1007/978-3-319-40624-4doiSubjects--Topical Terms:
182018
Feedback control systems.
LC Class. No.: TJ216
Dewey Class. No.: 629.83
Machine learning control - taming nonlinear dynamics and turbulence
LDR
:04828nmm a2200349 a 4500
001
505639
003
DE-He213
005
20170609085525.0
006
m d
007
cr nn 008maaau
008
171030s2017 gw s 0 eng d
020
$a
9783319406244$q(electronic bk.)
020
$a
9783319406237$q(paper)
024
7
$a
10.1007/978-3-319-40624-4
$2
doi
035
$a
978-3-319-40624-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TJ216
072
7
$a
TGMF
$2
bicssc
072
7
$a
TGMF1
$2
bicssc
072
7
$a
TEC009070
$2
bisacsh
072
7
$a
SCI085000
$2
bisacsh
082
0 4
$a
629.83
$2
23
090
$a
TJ216
$b
.D962 2017
100
1
$a
Duriez, Thomas.
$3
771125
245
1 0
$a
Machine learning control - taming nonlinear dynamics and turbulence
$h
[electronic resource] /
$c
by Thomas Duriez, Steven L. Brunton, Bernd R. Noack.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2017.
300
$a
xx, 211 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Fluid mechanics and its applications,
$x
0926-5112 ;
$v
v.116
505
0
$a
Preface -- 1 Introduction -- 1.1 Feedback in engineering and living systems -- 1.2 Benefits of feedback control -- 1.3 Challenges of feedback control -- 1.4 Feedback turbulence control is a grand challenge problem -- 1.5 Nature teaches us the control design -- 1.6 Outline of the book -- 1.7 Exercises -- 2 Machine learning control (MLC) -- 2.1 Methods of machine learning -- 2.2 MLC with genetic programming -- 2.3 Examples -- 2.4 Exercises -- 2.5 Suggested reading -- 2.6 Interview with Professor Marc Schoenauer -- 3 Methods of linear control theory -- 3.1 Linear systems -- 3.2 Full-state feedback -- Linear quadratic regulator (LQR) -- 3.3 Sensor-based state estimation -- Kalman filtering -- 3.4 Sensor-based feedback -- Linear quadratic Gaussian (LQG) -- 3.5 System Identification and Model Reduction -- 3.6 Exercises -- 3.7 Suggested reading -- 4 Benchmarking MLC against linear control -- 4.1 Comparison of MLC with LQR on a linear oscillator -- 4.2 Comparison of MLC with Kalman filter on a noisy linear oscillator -- 4.3 Comparison of MLC with LQG for sensor-based feedback -- 4.4 Modifications for small nonlinearity -- 4.5 Exercises -- 4.6 Interview with Professor Shervin Bagheri -- 5 Taming nonlinear dynamics with MLC -- 5.1 Generalized mean-field system -- 5.2 Machine learning control -- 5.3 Derivation outline for the generalized mean-field model -- 5.4 Alternative control approaches -- 5.5 Exercises -- 5.6 Suggested reading -- 5.7 Interview with Professor Mark N. Glauser -- 6 Taming real world flow control experiments with MLC -- 6.1 Separation control over a backward-facing step -- 6.2 Separation control of turbulent boundary layers -- 6.3 Control of mixing layer growth -- 6.4 Alternative model-based control approaches -- 6.5 Implementation of MLC in experiments -- 6.6 Suggested reading -- 6.7 Interview with Professor David Williams -- 7 MLC tactics and strategy -- 7.1 The ideal flow control experiment -- 7.2 Desiderata of the control problem -- from the definition to hardware choices -- 7.3 Time scales of MLC -- 7.4 MLC parameters and convergence -- 7.5 The imperfect experiment -- 8 Future developments -- 8.1 Methodological advances of MLC -- 8.2 System-reduction techniques for MLC -- Coping with high-dimensional input and output -- 8.3 Future applications of MLC -- 8.4 Exercises -- 8.5 Interview with Professor Belinda Batten -- Glossary -- Symbols -- Abbreviations -- Matlab® Code: OpenMLC -- Bibliography -- Index.
520
$a
This is the first book on a generally applicable control strategy for turbulence and other complex nonlinear systems. The approach of the book employs powerful methods of machine learning for optimal nonlinear control laws. This machine learning control (MLC) is motivated and detailed in Chapters 1 and 2. In Chapter 3, methods of linear control theory are reviewed. In Chapter 4, MLC is shown to reproduce known optimal control laws for linear dynamics (LQR, LQG) In Chapter 5, MLC detects and exploits a strongly nonlinear actuation mechanism of a low-dimensional dynamical system when linear control methods are shown to fail. Experimental control demonstrations from a laminar shear-layer to turbulent boundary-layers are reviewed in Chapter 6, followed by general good practices for experiments in Chapter 7. The book concludes with an outlook on the vast future applications of MLC in Chapter 8. Matlab codes are provided for easy reproducibility of the presented results. The book includes interviews with leading researchers in turbulence control (S. Bagheri, B. Batten, M. Glauser, D. Williams) and machine learning (M. Schoenauer) for a broader perspective. All chapters have exercises and supplemental videos will be available through YouTube.
650
0
$a
Feedback control systems.
$3
182018
650
0
$a
Adaptive control systems.
$3
182317
650
0
$a
Machine learning.
$3
188639
650
1 4
$a
Engineering.
$3
210888
650
2 4
$a
Engineering Fluid Dynamics.
$3
273893
650
2 4
$a
Fluid- and Aerodynamics.
$3
376797
650
2 4
$a
Control.
$3
349080
650
2 4
$a
Control Structures and Microprogramming.
$3
274663
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
252959
650
2 4
$a
Applications of Nonlinear Dynamics and Chaos Theory.
$3
760027
700
1
$a
Brunton, Steven L.
$3
771126
700
1
$a
Noack, Bernd R.
$3
522635
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Fluid mechanics and its applications ;
$v
v.98.
$3
557845
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-40624-4
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000136574
電子館藏
1圖書
電子書
EB TJ216 D962 2017
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-40624-4
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入