語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
A combinatorial perspective on quant...
~
SpringerLink (Online service)
A combinatorial perspective on quantum field theory
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
A combinatorial perspective on quantum field theoryby Karen Yeats.
作者:
Yeats, Karen.
出版者:
Cham :Springer International Publishing :2017.
面頁冊數:
ix, 120 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Quantum field theory.
電子資源:
http://dx.doi.org/10.1007/978-3-319-47551-6
ISBN:
9783319475516$q(electronic bk.)
A combinatorial perspective on quantum field theory
Yeats, Karen.
A combinatorial perspective on quantum field theory
[electronic resource] /by Karen Yeats. - Cham :Springer International Publishing :2017. - ix, 120 p. :ill., digital ;24 cm. - SpringerBriefs in mathematical physics,v.152197-1757 ;. - SpringerBriefs in mathematical physics ;v.1..
Part I Preliminaries -- Introduction -- Quantum field theory set up -- Combinatorial classes and rooted trees -- The Connes-Kreimer Hopf algebra -- Feynman graphs -- Part II Dyson-Schwinger equations -- Introduction to Dyson-Schwinger equations -- Sub-Hopf algebras from Dyson-Schwinger equations -- Tree factorial and leading log toys -- Chord diagram expansions -- Differential equations and the (next-to)m leading log expansion -- Part III Feynman periods -- Feynman integrals and Feynman periods -- Period preserving graph symmetries -- An invariant with these symmetries -- Weight -- The c2 invariant -- Combinatorial aspects of some integration algorithms -- Index.
This book explores combinatorial problems and insights in quantum field theory. It is not comprehensive, but rather takes a tour, shaped by the author's biases, through some of the important ways that a combinatorial perspective can be brought to bear on quantum field theory. Among the outcomes are both physical insights and interesting mathematics. The book begins by thinking of perturbative expansions as kinds of generating functions and then introduces renormalization Hopf algebras. The remainder is broken into two parts. The first part looks at Dyson-Schwinger equations, stepping gradually from the purely combinatorial to the more physical. The second part looks at Feynman graphs and their periods. The flavour of the book will appeal to mathematicians with a combinatorics background as well as mathematical physicists and other mathematicians.
ISBN: 9783319475516$q(electronic bk.)
Standard No.: 10.1007/978-3-319-47551-6doiSubjects--Topical Terms:
203819
Quantum field theory.
LC Class. No.: QC174.45
Dewey Class. No.: 530.143
A combinatorial perspective on quantum field theory
LDR
:02529nmm a2200325 a 4500
001
505893
003
DE-He213
005
20161125172108.0
006
m d
007
cr nn 008maaau
008
171030s2017 gw s 0 eng d
020
$a
9783319475516$q(electronic bk.)
020
$a
9783319475509$q(paper)
024
7
$a
10.1007/978-3-319-47551-6
$2
doi
035
$a
978-3-319-47551-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QC174.45
072
7
$a
PHS
$2
bicssc
072
7
$a
SCI057000
$2
bisacsh
082
0 4
$a
530.143
$2
23
090
$a
QC174.45
$b
.Y41 2017
100
1
$a
Yeats, Karen.
$3
771499
245
1 2
$a
A combinatorial perspective on quantum field theory
$h
[electronic resource] /
$c
by Karen Yeats.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2017.
300
$a
ix, 120 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in mathematical physics,
$x
2197-1757 ;
$v
v.15
505
0
$a
Part I Preliminaries -- Introduction -- Quantum field theory set up -- Combinatorial classes and rooted trees -- The Connes-Kreimer Hopf algebra -- Feynman graphs -- Part II Dyson-Schwinger equations -- Introduction to Dyson-Schwinger equations -- Sub-Hopf algebras from Dyson-Schwinger equations -- Tree factorial and leading log toys -- Chord diagram expansions -- Differential equations and the (next-to)m leading log expansion -- Part III Feynman periods -- Feynman integrals and Feynman periods -- Period preserving graph symmetries -- An invariant with these symmetries -- Weight -- The c2 invariant -- Combinatorial aspects of some integration algorithms -- Index.
520
$a
This book explores combinatorial problems and insights in quantum field theory. It is not comprehensive, but rather takes a tour, shaped by the author's biases, through some of the important ways that a combinatorial perspective can be brought to bear on quantum field theory. Among the outcomes are both physical insights and interesting mathematics. The book begins by thinking of perturbative expansions as kinds of generating functions and then introduces renormalization Hopf algebras. The remainder is broken into two parts. The first part looks at Dyson-Schwinger equations, stepping gradually from the purely combinatorial to the more physical. The second part looks at Feynman graphs and their periods. The flavour of the book will appeal to mathematicians with a combinatorics background as well as mathematical physicists and other mathematicians.
650
0
$a
Quantum field theory.
$3
203819
650
1 4
$a
Physics.
$3
179414
650
2 4
$a
Quantum Field Theories, String Theory.
$3
389186
650
2 4
$a
Mathematical Physics.
$3
522725
650
2 4
$a
Discrete Mathematics.
$3
524738
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in mathematical physics ;
$v
v.1.
$3
683312
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-47551-6
950
$a
Physics and Astronomy (Springer-11651)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000136828
電子館藏
1圖書
電子書
EB QC174.45 Y41 2017
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-47551-6
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入