語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Evolutionary computation techniquesa...
~
Cuevas, Erik.
Evolutionary computation techniquesa comparative perspective /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Evolutionary computation techniquesby Erik Cuevas, Valentin Osuna, Diego Oliva.
其他題名:
a comparative perspective /
作者:
Cuevas, Erik.
其他作者:
Osuna, Valentin.
出版者:
Cham :Springer International Publishing :2017.
面頁冊數:
xv, 222 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Evolutionary computation.
電子資源:
http://dx.doi.org/10.1007/978-3-319-51109-2
ISBN:
9783319511092$q(electronic bk.)
Evolutionary computation techniquesa comparative perspective /
Cuevas, Erik.
Evolutionary computation techniques
a comparative perspective /[electronic resource] :by Erik Cuevas, Valentin Osuna, Diego Oliva. - Cham :Springer International Publishing :2017. - xv, 222 p. :ill., digital ;24 cm. - Studies in computational intelligence,v.6861860-949X ;. - Studies in computational intelligence ;v. 216..
Preface -- Introduction -- Multilevel segmentation in digital images -- Multi-Circle detection on images -- Template matching -- Motion estimation -- Photovoltaic cell design -- Parameter identification of induction motors -- White blood cells Detection in images -- Estimation of view transformations in images -- Filter Design.
This book compares the performance of various evolutionary computation (EC) techniques when they are faced with complex optimization problems extracted from different engineering domains. Particularly focusing on recently developed algorithms, it is designed so that each chapter can be read independently. Several comparisons among EC techniques have been reported in the literature, however, they all suffer from one limitation: their conclusions are based on the performance of popular evolutionary approaches over a set of synthetic functions with exact solutions and well-known behaviors, without considering the application context or including recent developments. In each chapter, a complex engineering optimization problem is posed, and then a particular EC technique is presented as the best choice, according to its search characteristics. Lastly, a set of experiments is conducted in order to compare its performance to other popular EC methods.
ISBN: 9783319511092$q(electronic bk.)
Standard No.: 10.1007/978-3-319-51109-2doiSubjects--Topical Terms:
231709
Evolutionary computation.
LC Class. No.: TA347.E96
Dewey Class. No.: 006.3823
Evolutionary computation techniquesa comparative perspective /
LDR
:02321nmm a2200325 a 4500
001
506314
003
DE-He213
005
20170629144934.0
006
m d
007
cr nn 008maaau
008
171030s2017 gw s 0 eng d
020
$a
9783319511092$q(electronic bk.)
020
$a
9783319511085$q(paper)
024
7
$a
10.1007/978-3-319-51109-2
$2
doi
035
$a
978-3-319-51109-2
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TA347.E96
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
006.3823
$2
23
090
$a
TA347.E96
$b
C965 2017
100
1
$a
Cuevas, Erik.
$3
737835
245
1 0
$a
Evolutionary computation techniques
$h
[electronic resource] :
$b
a comparative perspective /
$c
by Erik Cuevas, Valentin Osuna, Diego Oliva.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2017.
300
$a
xv, 222 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Studies in computational intelligence,
$x
1860-949X ;
$v
v.686
505
0
$a
Preface -- Introduction -- Multilevel segmentation in digital images -- Multi-Circle detection on images -- Template matching -- Motion estimation -- Photovoltaic cell design -- Parameter identification of induction motors -- White blood cells Detection in images -- Estimation of view transformations in images -- Filter Design.
520
$a
This book compares the performance of various evolutionary computation (EC) techniques when they are faced with complex optimization problems extracted from different engineering domains. Particularly focusing on recently developed algorithms, it is designed so that each chapter can be read independently. Several comparisons among EC techniques have been reported in the literature, however, they all suffer from one limitation: their conclusions are based on the performance of popular evolutionary approaches over a set of synthetic functions with exact solutions and well-known behaviors, without considering the application context or including recent developments. In each chapter, a complex engineering optimization problem is posed, and then a particular EC technique is presented as the best choice, according to its search characteristics. Lastly, a set of experiments is conducted in order to compare its performance to other popular EC methods.
650
0
$a
Evolutionary computation.
$3
231709
650
1 4
$a
Engineering.
$3
210888
650
2 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
252959
700
1
$a
Osuna, Valentin.
$3
772213
700
1
$a
Oliva, Diego.
$3
771185
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Studies in computational intelligence ;
$v
v. 216.
$3
380871
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-51109-2
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000137249
電子館藏
1圖書
電子書
EB TA347.E96 C965 2017
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-51109-2
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入