語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Optimal trajectory tracking of nonli...
~
Lober, Jakob.
Optimal trajectory tracking of nonlinear dynamical systems
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Optimal trajectory tracking of nonlinear dynamical systemsby Jakob Lober.
作者:
Lober, Jakob.
出版者:
Cham :Springer International Publishing :2017.
面頁冊數:
xiv, 243 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Trajectory optimization.
電子資源:
http://dx.doi.org/10.1007/978-3-319-46574-6
ISBN:
9783319465746$q(electronic bk.)
Optimal trajectory tracking of nonlinear dynamical systems
Lober, Jakob.
Optimal trajectory tracking of nonlinear dynamical systems
[electronic resource] /by Jakob Lober. - Cham :Springer International Publishing :2017. - xiv, 243 p. :ill., digital ;24 cm. - Springer theses,2190-5053. - Springer theses..
Introduction -- Exactly Realizable Trajectories -- Optimal Control -- Analytical Approximations for Optimal Trajectory Tracking -- Control of Reaction-Diffusion System.
By establishing an alternative foundation of control theory, this thesis represents a significant advance in the theory of control systems, of interest to a broad range of scientists and engineers. While common control strategies for dynamical systems center on the system state as the object to be controlled, the approach developed here focuses on the state trajectory. The concept of precisely realizable trajectories identifies those trajectories that can be accurately achieved by applying appropriate control signals. The resulting simple expressions for the control signal lend themselves to immediate application in science and technology. The approach permits the generalization of many well-known results from the control theory of linear systems, e.g. the Kalman rank condition to nonlinear systems. The relationship between controllability, optimal control and trajectory tracking are clarified. Furthermore, the existence of linear structures underlying nonlinear optimal control is revealed, enabling the derivation of exact analytical solutions to an entire class of nonlinear optimal trajectory tracking problems. The clear and self-contained presentation focuses on a general and mathematically rigorous analysis of controlled dynamical systems. The concepts developed are visualized with the help of particular dynamical systems motivated by physics and chemistry.
ISBN: 9783319465746$q(electronic bk.)
Standard No.: 10.1007/978-3-319-46574-6doiSubjects--Topical Terms:
679527
Trajectory optimization.
LC Class. No.: TL1075
Dewey Class. No.: 531.55
Optimal trajectory tracking of nonlinear dynamical systems
LDR
:02554nmm a2200337 a 4500
001
506433
003
DE-He213
005
20161220194627.0
006
m d
007
cr nn 008maaau
008
171030s2017 gw s 0 eng d
020
$a
9783319465746$q(electronic bk.)
020
$a
9783319465739$q(paper)
024
7
$a
10.1007/978-3-319-46574-6
$2
doi
035
$a
978-3-319-46574-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TL1075
072
7
$a
PBWR
$2
bicssc
072
7
$a
PHDT
$2
bicssc
072
7
$a
SCI012000
$2
bisacsh
082
0 4
$a
531.55
$2
23
090
$a
TL1075
$b
.L797 2017
100
1
$a
Lober, Jakob.
$3
772423
245
1 0
$a
Optimal trajectory tracking of nonlinear dynamical systems
$h
[electronic resource] /
$c
by Jakob Lober.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2017.
300
$a
xiv, 243 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springer theses,
$x
2190-5053
505
0
$a
Introduction -- Exactly Realizable Trajectories -- Optimal Control -- Analytical Approximations for Optimal Trajectory Tracking -- Control of Reaction-Diffusion System.
520
$a
By establishing an alternative foundation of control theory, this thesis represents a significant advance in the theory of control systems, of interest to a broad range of scientists and engineers. While common control strategies for dynamical systems center on the system state as the object to be controlled, the approach developed here focuses on the state trajectory. The concept of precisely realizable trajectories identifies those trajectories that can be accurately achieved by applying appropriate control signals. The resulting simple expressions for the control signal lend themselves to immediate application in science and technology. The approach permits the generalization of many well-known results from the control theory of linear systems, e.g. the Kalman rank condition to nonlinear systems. The relationship between controllability, optimal control and trajectory tracking are clarified. Furthermore, the existence of linear structures underlying nonlinear optimal control is revealed, enabling the derivation of exact analytical solutions to an entire class of nonlinear optimal trajectory tracking problems. The clear and self-contained presentation focuses on a general and mathematically rigorous analysis of controlled dynamical systems. The concepts developed are visualized with the help of particular dynamical systems motivated by physics and chemistry.
650
0
$a
Trajectory optimization.
$3
679527
650
0
$a
Nonlinear systems.
$3
182906
650
1 4
$a
Physics.
$3
179414
650
2 4
$a
Applications of Nonlinear Dynamics and Chaos Theory.
$3
760027
650
2 4
$a
Calculus of Variations and Optimal Control; Optimization.
$3
274198
650
2 4
$a
Vibration, Dynamical Systems, Control.
$3
274667
650
2 4
$a
Dynamical Systems and Ergodic Theory.
$3
273794
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Springer theses.
$3
557607
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-46574-6
950
$a
Physics and Astronomy (Springer-11651)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000137368
電子館藏
1圖書
電子書
EB TL1075 L797 2017
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-46574-6
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入