語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Spectral analysis of growing graphsa...
~
Obata, Nobuaki.
Spectral analysis of growing graphsa quantum probability point of view /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Spectral analysis of growing graphsby Nobuaki Obata.
其他題名:
a quantum probability point of view /
作者:
Obata, Nobuaki.
出版者:
Singapore :Springer Singapore :2017.
面頁冊數:
viii, 138 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Spectral theory (Mathematics)
電子資源:
http://dx.doi.org/10.1007/978-981-10-3506-7
ISBN:
9789811035067$q(electronic bk.)
Spectral analysis of growing graphsa quantum probability point of view /
Obata, Nobuaki.
Spectral analysis of growing graphs
a quantum probability point of view /[electronic resource] :by Nobuaki Obata. - Singapore :Springer Singapore :2017. - viii, 138 p. :ill., digital ;24 cm. - SpringerBriefs in mathematical physics,v.202197-1757 ;. - SpringerBriefs in mathematical physics ;v.1..
1. Graphs and Matrices -- 2. Spectra of Finite Graphs -- 3. Spectral Distributions of Graphs -- 4. Orthogonal Polynomials and Fock Spaces -- 5. Analytic Theory of Moments -- 6. Method of Quantum Decomposition -- 7. Graph Products and Asymptotics -- References -- Index.
This book is designed as a concise introduction to the recent achievements on spectral analysis of graphs or networks from the point of view of quantum (or non-commutative) probability theory. The main topics are spectral distributions of the adjacency matrices of finite or infinite graphs and their limit distributions for growing graphs. The main vehicle is quantum probability, an algebraic extension of the traditional probability theory, which provides a new framework for the analysis of adjacency matrices revealing their non-commutative nature. For example, the method of quantum decomposition makes it possible to study spectral distributions by means of interacting Fock spaces or equivalently by orthogonal polynomials. Various concepts of independence in quantum probability and corresponding central limit theorems are used for the asymptotic study of spectral distributions for product graphs. This book is written for researchers, teachers, and students interested in graph spectra, their (asymptotic) spectral distributions, and various ideas and methods on the basis of quantum probability. It is also useful for a quick introduction to quantum probability and for an analytic basis of orthogonal polynomials.
ISBN: 9789811035067$q(electronic bk.)
Standard No.: 10.1007/978-981-10-3506-7doiSubjects--Topical Terms:
182365
Spectral theory (Mathematics)
LC Class. No.: QA320
Dewey Class. No.: 515.7222
Spectral analysis of growing graphsa quantum probability point of view /
LDR
:02528nmm a2200325 a 4500
001
507554
003
DE-He213
005
20170829100605.0
006
m d
007
cr nn 008maaau
008
171030s2017 si s 0 eng d
020
$a
9789811035067$q(electronic bk.)
020
$a
9789811035050$q(paper)
024
7
$a
10.1007/978-981-10-3506-7
$2
doi
035
$a
978-981-10-3506-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA320
072
7
$a
PHU
$2
bicssc
072
7
$a
SCI040000
$2
bisacsh
082
0 4
$a
515.7222
$2
23
090
$a
QA320
$b
.O12 2017
100
1
$a
Obata, Nobuaki.
$3
774266
245
1 0
$a
Spectral analysis of growing graphs
$h
[electronic resource] :
$b
a quantum probability point of view /
$c
by Nobuaki Obata.
260
$a
Singapore :
$b
Springer Singapore :
$b
Imprint: Springer,
$c
2017.
300
$a
viii, 138 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in mathematical physics,
$x
2197-1757 ;
$v
v.20
505
0
$a
1. Graphs and Matrices -- 2. Spectra of Finite Graphs -- 3. Spectral Distributions of Graphs -- 4. Orthogonal Polynomials and Fock Spaces -- 5. Analytic Theory of Moments -- 6. Method of Quantum Decomposition -- 7. Graph Products and Asymptotics -- References -- Index.
520
$a
This book is designed as a concise introduction to the recent achievements on spectral analysis of graphs or networks from the point of view of quantum (or non-commutative) probability theory. The main topics are spectral distributions of the adjacency matrices of finite or infinite graphs and their limit distributions for growing graphs. The main vehicle is quantum probability, an algebraic extension of the traditional probability theory, which provides a new framework for the analysis of adjacency matrices revealing their non-commutative nature. For example, the method of quantum decomposition makes it possible to study spectral distributions by means of interacting Fock spaces or equivalently by orthogonal polynomials. Various concepts of independence in quantum probability and corresponding central limit theorems are used for the asymptotic study of spectral distributions for product graphs. This book is written for researchers, teachers, and students interested in graph spectra, their (asymptotic) spectral distributions, and various ideas and methods on the basis of quantum probability. It is also useful for a quick introduction to quantum probability and for an analytic basis of orthogonal polynomials.
650
0
$a
Spectral theory (Mathematics)
$3
182365
650
0
$a
Graph theory.
$3
181880
650
1 4
$a
Mathematics.
$3
184409
650
2 4
$a
Mathematical Physics.
$3
522725
650
2 4
$a
Probability Theory and Stochastic Processes.
$3
274061
650
2 4
$a
Graph Theory.
$3
522732
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in mathematical physics ;
$v
v.1.
$3
683312
856
4 0
$u
http://dx.doi.org/10.1007/978-981-10-3506-7
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000138489
電子館藏
1圖書
電子書
EB QA320 O12 2017
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-981-10-3506-7
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入