語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Forecast error correction using dyna...
~
Jabrzemski, Rafal.
Forecast error correction using dynamic data assimilation
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Forecast error correction using dynamic data assimilationby Sivaramakrishnan Lakshmivarahan, John M. Lewis, Rafal Jabrzemski.
作者:
Lakshmivarahan, Sivaramakrishnan.
其他作者:
Lewis, John M.
出版者:
Cham :Springer International Publishing :2017.
面頁冊數:
xvi, 270 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
ForecastingMathematical models.
電子資源:
http://dx.doi.org/10.1007/978-3-319-39997-3
ISBN:
9783319399973$q(electronic bk.)
Forecast error correction using dynamic data assimilation
Lakshmivarahan, Sivaramakrishnan.
Forecast error correction using dynamic data assimilation
[electronic resource] /by Sivaramakrishnan Lakshmivarahan, John M. Lewis, Rafal Jabrzemski. - Cham :Springer International Publishing :2017. - xvi, 270 p. :ill., digital ;24 cm. - Springer atmospheric sciences,2194-5217. - Springer atmospheric sciences..
Part I Theory -- Introduction -- Dynamics of evolution of first- and second-order forward sensitivity: discrete time and continuous time -- Estimation of control errors using forward sensitivities: FSM with single and multiple observations -- Relation to adjoint sensitivity and impact of observation -- Estimation of model errors using Pontryagin's Maximum Principle- its relation to 4-D VAR and hence FSM -- FSM and predictability - Lyapunov index -- Part II Applications -- Mixed-layer model - the Gulf of Mexico problem -- Lagrangian data assimilation -- Conclusions -- Appendix -- Index.
This book introduces the reader to a new method of data assimilation with deterministic constraints (exact satisfaction of dynamic constraints)--an optimal assimilation strategy called Forecast Sensitivity Method (FSM), as an alternative to the well-known four-dimensional variational (4D-Var) data assimilation method. 4D-Var works with a forward in time prediction model and a backward in time tangent linear model (TLM) The equivalence of data assimilation via 4D-Var and FSM is proven and problems using low-order dynamics clarify the process of data assimilation by the two methods. The problem of return flow over the Gulf of Mexico that includes upper-air observations and realistic dynamical constraints gives the reader a good idea of how the FSM can be implemented in a real-world situation.
ISBN: 9783319399973$q(electronic bk.)
Standard No.: 10.1007/978-3-319-39997-3doiSubjects--Topical Terms:
206969
Forecasting
--Mathematical models.
LC Class. No.: QA614.8 / .L35 2017
Dewey Class. No.: 515.352
Forecast error correction using dynamic data assimilation
LDR
:02485nmm a2200337 a 4500
001
507790
003
DE-He213
005
20161022021308.0
006
m d
007
cr nn 008maaau
008
171031s2017 gw s 0 eng d
020
$a
9783319399973$q(electronic bk.)
020
$a
9783319399959$q(paper)
024
7
$a
10.1007/978-3-319-39997-3
$2
doi
035
$a
978-3-319-39997-3
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA614.8
$b
.L35 2017
072
7
$a
UNF
$2
bicssc
072
7
$a
UYQE
$2
bicssc
072
7
$a
COM021030
$2
bisacsh
082
0 4
$a
515.352
$2
23
090
$a
QA614.8
$b
.L192 2017
100
1
$a
Lakshmivarahan, Sivaramakrishnan.
$3
770232
245
1 0
$a
Forecast error correction using dynamic data assimilation
$h
[electronic resource] /
$c
by Sivaramakrishnan Lakshmivarahan, John M. Lewis, Rafal Jabrzemski.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2017.
300
$a
xvi, 270 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Springer atmospheric sciences,
$x
2194-5217
505
0
$a
Part I Theory -- Introduction -- Dynamics of evolution of first- and second-order forward sensitivity: discrete time and continuous time -- Estimation of control errors using forward sensitivities: FSM with single and multiple observations -- Relation to adjoint sensitivity and impact of observation -- Estimation of model errors using Pontryagin's Maximum Principle- its relation to 4-D VAR and hence FSM -- FSM and predictability - Lyapunov index -- Part II Applications -- Mixed-layer model - the Gulf of Mexico problem -- Lagrangian data assimilation -- Conclusions -- Appendix -- Index.
520
$a
This book introduces the reader to a new method of data assimilation with deterministic constraints (exact satisfaction of dynamic constraints)--an optimal assimilation strategy called Forecast Sensitivity Method (FSM), as an alternative to the well-known four-dimensional variational (4D-Var) data assimilation method. 4D-Var works with a forward in time prediction model and a backward in time tangent linear model (TLM) The equivalence of data assimilation via 4D-Var and FSM is proven and problems using low-order dynamics clarify the process of data assimilation by the two methods. The problem of return flow over the Gulf of Mexico that includes upper-air observations and realistic dynamical constraints gives the reader a good idea of how the FSM can be implemented in a real-world situation.
650
0
$a
Forecasting
$x
Mathematical models.
$3
206969
650
0
$a
Differentiable dynamical systems.
$3
183764
650
1 4
$a
Computer Science.
$3
212513
650
2 4
$a
Data Mining and Knowledge Discovery.
$3
275288
650
2 4
$a
Simulation and Modeling.
$3
273719
650
2 4
$a
Models and Principles.
$3
273718
650
2 4
$a
Atmospheric Sciences.
$3
264356
650
2 4
$a
Quantitative Geology.
$3
286724
700
1
$a
Lewis, John M.
$3
770233
700
1
$a
Jabrzemski, Rafal.
$3
770234
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Springer atmospheric sciences.
$3
558572
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-39997-3
950
$a
Earth and Environmental Science (Springer-11646)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000136033
電子館藏
1圖書
電子書
EB QA614.8 L192 2017
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-39997-3
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入