語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Emerging technology and architecture...
~
Chang, Chip Hong.
Emerging technology and architecture for big-data analytics
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Emerging technology and architecture for big-data analyticsedited by Anupam Chattopadhyay, Chip Hong Chang, Hao Yu.
其他作者:
Chattopadhyay, Anupam.
出版者:
Cham :Springer International Publishing :2017.
面頁冊數:
xi, 330 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
標題:
Big data.
電子資源:
http://dx.doi.org/10.1007/978-3-319-54840-1
ISBN:
9783319548401$q(electronic bk.)
Emerging technology and architecture for big-data analytics
Emerging technology and architecture for big-data analytics
[electronic resource] /edited by Anupam Chattopadhyay, Chip Hong Chang, Hao Yu. - Cham :Springer International Publishing :2017. - xi, 330 p. :ill. (some col.), digital ;24 cm.
Part I State-of-the-Art Architectures and Automation for Data-analytics -- Chapter 1. Scaling the Java Virtual Machine on a Many-core System -- Chapter 2.Scaling the Java Virtual Machine on a Many-core System -- Chapter 3.Least-squares based Machine Learning Accelerator for Big-data Analytics in Smart Buildings -- Chapter 4.Compute-in-memory Architecture for Data-Intensive Kernels -- Chapter 5. New Solutions for Cross-Layer System-Level and High-Level Synthesis -- Part II New Solutions for Cross-Layer System-Level and High-Level Synthesis -- Chapter 6.Side Channel Attacks and Efficient Countermeasures on Residue Number System Multipliers -- Chapter 7. Ultra-Low-Power Biomedical Circuit Design and Optimization: Catching The Don't Cares -- Chapter 8.Acceleration of MapReduce Framework on a Multicore Processor -- Chapter 9. Adaptive dynamic range compression for improving envelope-based speech perception: Implications for cochlear implants -- Part III Emerging Technology, Circuits and Systems for Data-analytics -- Chapter 10. Emerging Technology, Circuits and Systems for Data-analytics -- Chapter 11. Energy Efficient Spiking Neural Network Design with RRAM Devices -- Chapter 12. Efficient Neuromorphic Systems and Emerging Technologies - Prospects and Perspectives -- Chapter 13. In-memory Data Compression Using ReRAMs -- Chapter 14. In-memory Data Compression Using ReRAMs -- Chapter 15.Data Analytics in Quantum Paradigm - An Introduction.
This book describes the current state of the art in big-data analytics, from a technology and hardware architecture perspective. The presentation is designed to be accessible to a broad audience, with general knowledge of hardware design and some interest in big-data analytics. Coverage includes emerging technology and devices for data-analytics, circuit design for data-analytics, and architecture and algorithms to support data-analytics. Readers will benefit from the realistic context used by the authors, which demonstrates what works, what doesn't work, and what are the fundamental problems, solutions, upcoming challenges and opportunities. Provides a single-source reference to hardware architectures for big-data analytics; Covers various levels of big-data analytics hardware design abstraction and flow, from device, to circuits and systems; Demonstrates how non-volatile memory (NVM) based hardware platforms can be a viable solution to existing challenges in hardware architecture for big-data analytics.
ISBN: 9783319548401$q(electronic bk.)
Standard No.: 10.1007/978-3-319-54840-1doiSubjects--Topical Terms:
609582
Big data.
LC Class. No.: QA76.9.B45
Dewey Class. No.: 005.7
Emerging technology and architecture for big-data analytics
LDR
:03457nmm a2200313 a 4500
001
512069
003
DE-He213
005
20171106104542.0
006
m d
007
cr nn 008maaau
008
171226s2017 gw s 0 eng d
020
$a
9783319548401$q(electronic bk.)
020
$a
9783319548395$q(paper)
024
7
$a
10.1007/978-3-319-54840-1
$2
doi
035
$a
978-3-319-54840-1
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.9.B45
072
7
$a
TJFC
$2
bicssc
072
7
$a
TEC008010
$2
bisacsh
082
0 4
$a
005.7
$2
23
090
$a
QA76.9.B45
$b
E53 2017
245
0 0
$a
Emerging technology and architecture for big-data analytics
$h
[electronic resource] /
$c
edited by Anupam Chattopadhyay, Chip Hong Chang, Hao Yu.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2017.
300
$a
xi, 330 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
505
0
$a
Part I State-of-the-Art Architectures and Automation for Data-analytics -- Chapter 1. Scaling the Java Virtual Machine on a Many-core System -- Chapter 2.Scaling the Java Virtual Machine on a Many-core System -- Chapter 3.Least-squares based Machine Learning Accelerator for Big-data Analytics in Smart Buildings -- Chapter 4.Compute-in-memory Architecture for Data-Intensive Kernels -- Chapter 5. New Solutions for Cross-Layer System-Level and High-Level Synthesis -- Part II New Solutions for Cross-Layer System-Level and High-Level Synthesis -- Chapter 6.Side Channel Attacks and Efficient Countermeasures on Residue Number System Multipliers -- Chapter 7. Ultra-Low-Power Biomedical Circuit Design and Optimization: Catching The Don't Cares -- Chapter 8.Acceleration of MapReduce Framework on a Multicore Processor -- Chapter 9. Adaptive dynamic range compression for improving envelope-based speech perception: Implications for cochlear implants -- Part III Emerging Technology, Circuits and Systems for Data-analytics -- Chapter 10. Emerging Technology, Circuits and Systems for Data-analytics -- Chapter 11. Energy Efficient Spiking Neural Network Design with RRAM Devices -- Chapter 12. Efficient Neuromorphic Systems and Emerging Technologies - Prospects and Perspectives -- Chapter 13. In-memory Data Compression Using ReRAMs -- Chapter 14. In-memory Data Compression Using ReRAMs -- Chapter 15.Data Analytics in Quantum Paradigm - An Introduction.
520
$a
This book describes the current state of the art in big-data analytics, from a technology and hardware architecture perspective. The presentation is designed to be accessible to a broad audience, with general knowledge of hardware design and some interest in big-data analytics. Coverage includes emerging technology and devices for data-analytics, circuit design for data-analytics, and architecture and algorithms to support data-analytics. Readers will benefit from the realistic context used by the authors, which demonstrates what works, what doesn't work, and what are the fundamental problems, solutions, upcoming challenges and opportunities. Provides a single-source reference to hardware architectures for big-data analytics; Covers various levels of big-data analytics hardware design abstraction and flow, from device, to circuits and systems; Demonstrates how non-volatile memory (NVM) based hardware platforms can be a viable solution to existing challenges in hardware architecture for big-data analytics.
650
0
$a
Big data.
$3
609582
650
1 4
$a
Engineering.
$3
210888
650
2 4
$a
Circuits and Systems.
$3
274416
650
2 4
$a
Processor Architectures.
$3
274498
650
2 4
$a
Electronic Circuits and Devices.
$3
495609
650
2 4
$a
Big Data/Analytics.
$3
742047
700
1
$a
Chattopadhyay, Anupam.
$3
338679
700
1
$a
Chang, Chip Hong.
$3
779718
700
1
$a
Yu, Hao.
$3
561113
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-54840-1
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000141323
電子館藏
1圖書
電子書
EB QA76.9.B45 E53 2017
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-54840-1
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入