語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Matrix-Exponential Distributions in ...
~
Bladt, Mogens.
Matrix-Exponential Distributions in Applied Probability
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Matrix-Exponential Distributions in Applied Probabilityby Mogens Bladt, Bo Friis Nielsen.
作者:
Bladt, Mogens.
其他作者:
Nielsen, Bo Friis.
出版者:
Boston, MA :Springer US :2017.
面頁冊數:
xvii, 736 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
標題:
Markov processes.
電子資源:
http://dx.doi.org/10.1007/978-1-4939-7049-0
ISBN:
9781493970490$q(electronic bk.)
Matrix-Exponential Distributions in Applied Probability
Bladt, Mogens.
Matrix-Exponential Distributions in Applied Probability
[electronic resource] /by Mogens Bladt, Bo Friis Nielsen. - Boston, MA :Springer US :2017. - xvii, 736 p. :ill. (some col.), digital ;24 cm. - Probability theory and stochastic modelling,v.812199-3130 ;. - Probability theory and stochastic modelling ;v.70..
Preface -- Notation -- Preliminaries on Stochastic Processes -- Martingales and More General Markov Processes -- Phase-type Distributions -- Matrix-exponential Distributions -- Renewal Theory -- Random Walks -- Regeneration and Harris Chains -- Multivariate Distributions -- Markov Additive Processes -- Markovian Point Processes -- Some Applications to Risk Theory -- Statistical Methods for Markov Processes -- Estimation of Phase-type Distributions -- Bibliographic Notes -- Appendix.
This book contains an in-depth treatment of matrix-exponential (ME) distributions and their sub-class of phase-type (PH) distributions. Loosely speaking, an ME distribution is obtained through replacing the intensity parameter in an exponential distribution by a matrix. The ME distributions can also be identified as the class of non-negative distributions with rational Laplace transforms. If the matrix has the structure of a sub-intensity matrix for a Markov jump process we obtain a PH distribution which allows for nice probabilistic interpretations facilitating the derivation of exact solutions and closed form formulas. The full potential of ME and PH unfolds in their use in stochastic modelling. Several chapters on generic applications, like renewal theory, random walks and regenerative processes, are included together with some specific examples from queueing theory and insurance risk. We emphasize our intention towards applications by including an extensive treatment on statistical methods for PH distributions and related processes that will allow practitioners to calibrate models to real data. Aimed as a textbook for graduate students in applied probability and statistics, the book provides all the necessary background on Poisson processes, Markov chains, jump processes, martingales and re-generative methods. It is our hope that the provided background may encourage researchers and practitioners from other fields, like biology, genetics and medicine, who wish to become acquainted with the matrix-exponential method and its applications.
ISBN: 9781493970490$q(electronic bk.)
Standard No.: 10.1007/978-1-4939-7049-0doiSubjects--Topical Terms:
181910
Markov processes.
LC Class. No.: QA274.7
Dewey Class. No.: 519.233
Matrix-Exponential Distributions in Applied Probability
LDR
:03134nmm a2200337 a 4500
001
515320
003
DE-He213
005
20170518204506.0
006
m d
007
cr nn 008maaau
008
180126s2017 mau s 0 eng d
020
$a
9781493970490$q(electronic bk.)
020
$a
9781493970476$q(paper)
024
7
$a
10.1007/978-1-4939-7049-0
$2
doi
035
$a
978-1-4939-7049-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA274.7
072
7
$a
PBT
$2
bicssc
072
7
$a
PBWL
$2
bicssc
072
7
$a
MAT029000
$2
bisacsh
082
0 4
$a
519.233
$2
23
090
$a
QA274.7
$b
.B632 2017
100
1
$a
Bladt, Mogens.
$3
785702
245
1 0
$a
Matrix-Exponential Distributions in Applied Probability
$h
[electronic resource] /
$c
by Mogens Bladt, Bo Friis Nielsen.
260
$a
Boston, MA :
$b
Springer US :
$b
Imprint: Springer,
$c
2017.
300
$a
xvii, 736 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
Probability theory and stochastic modelling,
$x
2199-3130 ;
$v
v.81
505
0
$a
Preface -- Notation -- Preliminaries on Stochastic Processes -- Martingales and More General Markov Processes -- Phase-type Distributions -- Matrix-exponential Distributions -- Renewal Theory -- Random Walks -- Regeneration and Harris Chains -- Multivariate Distributions -- Markov Additive Processes -- Markovian Point Processes -- Some Applications to Risk Theory -- Statistical Methods for Markov Processes -- Estimation of Phase-type Distributions -- Bibliographic Notes -- Appendix.
520
$a
This book contains an in-depth treatment of matrix-exponential (ME) distributions and their sub-class of phase-type (PH) distributions. Loosely speaking, an ME distribution is obtained through replacing the intensity parameter in an exponential distribution by a matrix. The ME distributions can also be identified as the class of non-negative distributions with rational Laplace transforms. If the matrix has the structure of a sub-intensity matrix for a Markov jump process we obtain a PH distribution which allows for nice probabilistic interpretations facilitating the derivation of exact solutions and closed form formulas. The full potential of ME and PH unfolds in their use in stochastic modelling. Several chapters on generic applications, like renewal theory, random walks and regenerative processes, are included together with some specific examples from queueing theory and insurance risk. We emphasize our intention towards applications by including an extensive treatment on statistical methods for PH distributions and related processes that will allow practitioners to calibrate models to real data. Aimed as a textbook for graduate students in applied probability and statistics, the book provides all the necessary background on Poisson processes, Markov chains, jump processes, martingales and re-generative methods. It is our hope that the provided background may encourage researchers and practitioners from other fields, like biology, genetics and medicine, who wish to become acquainted with the matrix-exponential method and its applications.
650
0
$a
Markov processes.
$3
181910
650
0
$a
Probabilities.
$3
182046
650
1 4
$a
Mathematics.
$3
184409
650
2 4
$a
Probability Theory and Stochastic Processes.
$3
274061
650
2 4
$a
Operations Research, Management Science.
$3
511451
700
1
$a
Nielsen, Bo Friis.
$3
785703
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Probability theory and stochastic modelling ;
$v
v.70.
$3
683306
856
4 0
$u
http://dx.doi.org/10.1007/978-1-4939-7049-0
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000144083
電子館藏
1圖書
電子書
EB QA274.7 B632 2017
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-1-4939-7049-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入