語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Noncausal stochastic calculus
~
Ogawa, Shigeyoshi.
Noncausal stochastic calculus
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Noncausal stochastic calculusby Shigeyoshi Ogawa.
作者:
Ogawa, Shigeyoshi.
出版者:
Tokyo :Springer Japan :2017.
面頁冊數:
xii, 210 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Stochastic analysis.
電子資源:
http://dx.doi.org/10.1007/978-4-431-56576-5
ISBN:
9784431565765$q(electronic bk.)
Noncausal stochastic calculus
Ogawa, Shigeyoshi.
Noncausal stochastic calculus
[electronic resource] /by Shigeyoshi Ogawa. - Tokyo :Springer Japan :2017. - xii, 210 p. :ill., digital ;24 cm.
1 Introduction - Why the Causality? -- 2 Preliminary - Causal calculus -- 3 Noncausal Calculus -- 4 Noncausal Integral and Wiener Chaos -- 5 Noncausal SDEs -- 6 Brownian Particle Equation -- 7 Noncausal SIE -- 8 Stochastic Fourier Transformation -- 9 Appendices to Chapter 2 -- 10 Appendices 2 - Comments and Proofs -- Index.
This book presents an elementary introduction to the theory of noncausal stochastic calculus that arises as a natural alternative to the standard theory of stochastic calculus founded in 1944 by Professor Kiyoshi Itô. As is generally known, Itô Calculus is essentially based on the "hypothesis of causality", asking random functions to be adapted to a natural filtration generated by Brownian motion or more generally by square integrable martingale. The intention in this book is to establish a stochastic calculus that is free from this "hypothesis of causality". To be more precise, a noncausal theory of stochastic calculus is developed in this book, based on the noncausal integral introduced by the author in 1979. After studying basic properties of the noncausal stochastic integral, various concrete problems of noncausal nature are considered, mostly concerning stochastic functional equations such as SDE, SIE, SPDE, and others, to show not only the necessity of such theory of noncausal stochastic calculus but also its growing possibility as a tool for modeling and analysis in every domain of mathematical sciences. The reader may find there many open problems as well.
ISBN: 9784431565765$q(electronic bk.)
Standard No.: 10.1007/978-4-431-56576-5doiSubjects--Topical Terms:
183332
Stochastic analysis.
LC Class. No.: QA274.2
Dewey Class. No.: 519.22
Noncausal stochastic calculus
LDR
:02420nmm a2200313 a 4500
001
520398
003
DE-He213
005
20170726044015.0
006
m d
007
cr nn 008maaau
008
180425s2017 ja s 0 eng d
020
$a
9784431565765$q(electronic bk.)
020
$a
9784431565741$q(paper)
024
7
$a
10.1007/978-4-431-56576-5
$2
doi
035
$a
978-4-431-56576-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA274.2
072
7
$a
PB
$2
bicssc
072
7
$a
MAT000000
$2
bisacsh
082
0 4
$a
519.22
$2
23
090
$a
QA274.2
$b
.O34 2017
100
1
$a
Ogawa, Shigeyoshi.
$3
366157
245
1 0
$a
Noncausal stochastic calculus
$h
[electronic resource] /
$c
by Shigeyoshi Ogawa.
260
$a
Tokyo :
$b
Springer Japan :
$b
Imprint: Springer,
$c
2017.
300
$a
xii, 210 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
1 Introduction - Why the Causality? -- 2 Preliminary - Causal calculus -- 3 Noncausal Calculus -- 4 Noncausal Integral and Wiener Chaos -- 5 Noncausal SDEs -- 6 Brownian Particle Equation -- 7 Noncausal SIE -- 8 Stochastic Fourier Transformation -- 9 Appendices to Chapter 2 -- 10 Appendices 2 - Comments and Proofs -- Index.
520
$a
This book presents an elementary introduction to the theory of noncausal stochastic calculus that arises as a natural alternative to the standard theory of stochastic calculus founded in 1944 by Professor Kiyoshi Itô. As is generally known, Itô Calculus is essentially based on the "hypothesis of causality", asking random functions to be adapted to a natural filtration generated by Brownian motion or more generally by square integrable martingale. The intention in this book is to establish a stochastic calculus that is free from this "hypothesis of causality". To be more precise, a noncausal theory of stochastic calculus is developed in this book, based on the noncausal integral introduced by the author in 1979. After studying basic properties of the noncausal stochastic integral, various concrete problems of noncausal nature are considered, mostly concerning stochastic functional equations such as SDE, SIE, SPDE, and others, to show not only the necessity of such theory of noncausal stochastic calculus but also its growing possibility as a tool for modeling and analysis in every domain of mathematical sciences. The reader may find there many open problems as well.
650
0
$a
Stochastic analysis.
$3
183332
650
1 4
$a
Mathematics.
$3
184409
650
2 4
$a
Mathematics, general.
$3
274849
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-4-431-56576-5
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000146092
電子館藏
1圖書
電子書
EB QA274.2 O34 2017
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-4-431-56576-5
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入