語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Bayesian data analysis for animal sc...
~
Blasco, Agustin.
Bayesian data analysis for animal scientiststhe basics /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Bayesian data analysis for animal scientistsby Agustin Blasco.
其他題名:
the basics /
作者:
Blasco, Agustin.
出版者:
Cham :Springer International Publishing :2017.
面頁冊數:
xviii, 275 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Bayesian statistical decision theory.
電子資源:
http://dx.doi.org/10.1007/978-3-319-54274-4
ISBN:
9783319542744$q(electronic bk.)
Bayesian data analysis for animal scientiststhe basics /
Blasco, Agustin.
Bayesian data analysis for animal scientists
the basics /[electronic resource] :by Agustin Blasco. - Cham :Springer International Publishing :2017. - xviii, 275 p. :ill., digital ;24 cm.
Foreword -- Notation -- 1. Do we understand classical statistics? -- 2. The Bayesian choice -- 3. Posterior distributions -- 4. MCMC -- 5. The "baby" model -- 6. The linear model. I. The "fixed" effects model -- 7. The linear model. II. The "mixed" model -- 8. A scope of the possibilities of Bayesian inference + MCMC -- 9. Prior information -- 10. Model choice -- Appendix -- References.
In this book, we provide an easy introduction to Bayesian inference using MCMC techniques, making most topics intuitively reasonable and deriving to appendixes the more complicated matters. The biologist or the agricultural researcher does not normally have a background in Bayesian statistics, having difficulties in following the technical books introducing Bayesian techniques. The difficulties arise from the way of making inferences, which is completely different in the Bayesian school, and from the difficulties in understanding complicated matters such as the MCMC numerical methods. We compare both schools, classic and Bayesian, underlying the advantages of Bayesian solutions, and proposing inferences based in relevant differences, guaranteed values, probabilities of similitude or the use of ratios. We also give a scope of complex problems that can be solved using Bayesian statistics, and we end the book explaining the difficulties associated to model choice and the use of small samples. The book has a practical orientation and uses simple models to introduce the reader in this increasingly popular school of inference.
ISBN: 9783319542744$q(electronic bk.)
Standard No.: 10.1007/978-3-319-54274-4doiSubjects--Topical Terms:
182005
Bayesian statistical decision theory.
LC Class. No.: QA279.5
Dewey Class. No.: 519.542
Bayesian data analysis for animal scientiststhe basics /
LDR
:02471nmm a2200313 a 4500
001
520948
003
DE-He213
005
20180312094849.0
006
m d
007
cr nn 008maaau
008
180504s2017 gw s 0 eng d
020
$a
9783319542744$q(electronic bk.)
020
$a
9783319542737$q(paper)
024
7
$a
10.1007/978-3-319-54274-4
$2
doi
035
$a
978-3-319-54274-4
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA279.5
072
7
$a
TVB
$2
bicssc
072
7
$a
TEC003000
$2
bisacsh
082
0 4
$a
519.542
$2
23
090
$a
QA279.5
$b
.B644 2017
100
1
$a
Blasco, Agustin.
$3
790723
245
1 0
$a
Bayesian data analysis for animal scientists
$h
[electronic resource] :
$b
the basics /
$c
by Agustin Blasco.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2017.
300
$a
xviii, 275 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Foreword -- Notation -- 1. Do we understand classical statistics? -- 2. The Bayesian choice -- 3. Posterior distributions -- 4. MCMC -- 5. The "baby" model -- 6. The linear model. I. The "fixed" effects model -- 7. The linear model. II. The "mixed" model -- 8. A scope of the possibilities of Bayesian inference + MCMC -- 9. Prior information -- 10. Model choice -- Appendix -- References.
520
$a
In this book, we provide an easy introduction to Bayesian inference using MCMC techniques, making most topics intuitively reasonable and deriving to appendixes the more complicated matters. The biologist or the agricultural researcher does not normally have a background in Bayesian statistics, having difficulties in following the technical books introducing Bayesian techniques. The difficulties arise from the way of making inferences, which is completely different in the Bayesian school, and from the difficulties in understanding complicated matters such as the MCMC numerical methods. We compare both schools, classic and Bayesian, underlying the advantages of Bayesian solutions, and proposing inferences based in relevant differences, guaranteed values, probabilities of similitude or the use of ratios. We also give a scope of complex problems that can be solved using Bayesian statistics, and we end the book explaining the difficulties associated to model choice and the use of small samples. The book has a practical orientation and uses simple models to introduce the reader in this increasingly popular school of inference.
650
0
$a
Bayesian statistical decision theory.
$3
182005
650
0
$a
Life sciences.
$3
215795
650
0
$a
Agriculture.
$3
274257
650
0
$a
Biometry.
$3
182039
650
0
$a
Animal genetics.
$3
337749
650
0
$a
Biomathematics.
$3
212374
650
1 4
$a
Life Sciences.
$3
273679
650
2 4
$a
Veterinary Medicine/Veterinary Science.
$3
761093
650
2 4
$a
Mathematical and Computational Biology.
$3
514442
650
2 4
$a
Animal Genetics and Genomics.
$3
274341
650
2 4
$a
Biostatistics.
$3
339693
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-54274-4
950
$a
Biomedical and Life Sciences (Springer-11642)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000146337
電子館藏
1圖書
電子書
EB QA279.5 B644 2017
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-54274-4
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入