語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Attractors under discretisation
~
Han, Xiaoying.
Attractors under discretisation
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Attractors under discretisationby Xiaoying Han, Peter Kloeden.
作者:
Han, Xiaoying.
其他作者:
Kloeden, Peter.
出版者:
Cham :Springer International Publishing :2017.
面頁冊數:
xi, 122 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Attractors (Mathematics)
電子資源:
http://dx.doi.org/10.1007/978-3-319-61934-7
ISBN:
9783319619347$q(electronic bk.)
Attractors under discretisation
Han, Xiaoying.
Attractors under discretisation
[electronic resource] /by Xiaoying Han, Peter Kloeden. - Cham :Springer International Publishing :2017. - xi, 122 p. :ill., digital ;24 cm. - SpringerBriefs in mathematics,2191-8198. - SpringerBriefs in mathematics..
Part I Dynamical systems and numerical schemes -- 1 Lyapunov stability and dynamical systems -- 2 One step numerical schemes -- Part II Steady states under discretization -- 3 Linear systems -- 4 Lyapunov functions -- 5 Dissipative systems with steady states -- 6 Saddle points under discretisation. Part III Autonomous attractors under discretization -- 7 Dissipative systems with attractors -- 8 Lyapunov functions for attractors -- 9 Discretisation of an attractor. Part IV Nonautonomous limit sets under discretization -- 10 Dissipative nonautonomous systems -- 11 Discretisation of nonautonomous limit sets -- 12 Variable step size -- 13 Discretisation of a uniform pullback attractor -- Notes -- References.
This work focuses on the preservation of attractors and saddle points of ordinary differential equations under discretisation. In the 1980s, key results for autonomous ordinary differential equations were obtained - by Beyn for saddle points and by Kloeden & Lorenz for attractors. One-step numerical schemes with a constant step size were considered, so the resulting discrete time dynamical system was also autonomous. One of the aims of this book is to present new findings on the discretisation of dissipative nonautonomous dynamical systems that have been obtained in recent years, and in particular to examine the properties of nonautonomous omega limit sets and their approximations by numerical schemes - results that are also of importance for autonomous systems approximated by a numerical scheme with variable time steps, thus by a discrete time nonautonomous dynamical system.
ISBN: 9783319619347$q(electronic bk.)
Standard No.: 10.1007/978-3-319-61934-7doiSubjects--Topical Terms:
239620
Attractors (Mathematics)
LC Class. No.: QA614.813 / .H36 2017
Dewey Class. No.: 515.39
Attractors under discretisation
LDR
:02635nmm a2200337 a 4500
001
521358
003
DE-He213
005
20180319160715.0
006
m d
007
cr nn 008maaau
008
180504s2017 gw s 0 eng d
020
$a
9783319619347$q(electronic bk.)
020
$a
9783319619330$q(paper)
024
7
$a
10.1007/978-3-319-61934-7
$2
doi
035
$a
978-3-319-61934-7
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA614.813
$b
.H36 2017
072
7
$a
PBKS
$2
bicssc
072
7
$a
MAT021000
$2
bisacsh
072
7
$a
MAT006000
$2
bisacsh
082
0 4
$a
515.39
$2
23
090
$a
QA614.813
$b
.H233 2017
100
1
$a
Han, Xiaoying.
$3
791354
245
1 0
$a
Attractors under discretisation
$h
[electronic resource] /
$c
by Xiaoying Han, Peter Kloeden.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2017.
300
$a
xi, 122 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
SpringerBriefs in mathematics,
$x
2191-8198
505
0
$a
Part I Dynamical systems and numerical schemes -- 1 Lyapunov stability and dynamical systems -- 2 One step numerical schemes -- Part II Steady states under discretization -- 3 Linear systems -- 4 Lyapunov functions -- 5 Dissipative systems with steady states -- 6 Saddle points under discretisation. Part III Autonomous attractors under discretization -- 7 Dissipative systems with attractors -- 8 Lyapunov functions for attractors -- 9 Discretisation of an attractor. Part IV Nonautonomous limit sets under discretization -- 10 Dissipative nonautonomous systems -- 11 Discretisation of nonautonomous limit sets -- 12 Variable step size -- 13 Discretisation of a uniform pullback attractor -- Notes -- References.
520
$a
This work focuses on the preservation of attractors and saddle points of ordinary differential equations under discretisation. In the 1980s, key results for autonomous ordinary differential equations were obtained - by Beyn for saddle points and by Kloeden & Lorenz for attractors. One-step numerical schemes with a constant step size were considered, so the resulting discrete time dynamical system was also autonomous. One of the aims of this book is to present new findings on the discretisation of dissipative nonautonomous dynamical systems that have been obtained in recent years, and in particular to examine the properties of nonautonomous omega limit sets and their approximations by numerical schemes - results that are also of importance for autonomous systems approximated by a numerical scheme with variable time steps, thus by a discrete time nonautonomous dynamical system.
650
0
$a
Attractors (Mathematics)
$3
239620
650
1 4
$a
Mathematics.
$3
184409
650
2 4
$a
Numerical Analysis.
$3
275681
650
2 4
$a
Dynamical Systems and Ergodic Theory.
$3
273794
650
2 4
$a
Ordinary Differential Equations.
$3
273778
700
1
$a
Kloeden, Peter.
$3
697642
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
SpringerBriefs in mathematics.
$3
558795
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-61934-7
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000146747
電子館藏
1圖書
電子書
EB QA614.813 H233 2017
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-61934-7
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入