語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
A discrete Hilbert transform with ci...
~
SpringerLink (Online service)
A discrete Hilbert transform with circle packings
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
A discrete Hilbert transform with circle packingsby Dominik Volland.
作者:
Volland, Dominik.
出版者:
Wiesbaden :Springer Fachmedien Wiesbaden :2017.
面頁冊數:
xi, 102 p. :ill. (some col.), digital ;24 cm.
Contained By:
Springer eBooks
標題:
Hilbert transform.
電子資源:
http://dx.doi.org/10.1007/978-3-658-20457-0
ISBN:
9783658204570$q(electronic bk.)
A discrete Hilbert transform with circle packings
Volland, Dominik.
A discrete Hilbert transform with circle packings
[electronic resource] /by Dominik Volland. - Wiesbaden :Springer Fachmedien Wiesbaden :2017. - xi, 102 p. :ill. (some col.), digital ;24 cm. - BestMasters. - BestMasters..
Hardy Spaces and Riemann-Hilbert Problems -- The Hilbert Transform in the Classical Setting -- Circle Packings -- Discrete Boundary Value Problems -- Discrete Hilbert Transform -- Numerical Results of Test Computations -- Properties of the Discrete Transform.
Dominik Volland studies the construction of a discrete counterpart to the Hilbert transform in the realm of a nonlinear discrete complex analysis given by circle packings. The Hilbert transform is closely related to Riemann-Hilbert problems which have been studied in the framework of circle packings by E. Wegert and co-workers since 2009. The author demonstrates that the discrete Hilbert transform is well-defined in this framework by proving a conjecture on discrete problems formulated by Wegert. Moreover, he illustrates its properties by carefully chosen numerical examples. Basic knowledge of complex analysis and functional analysis is recommended. Contents Hardy Spaces and Riemann-Hilbert Problems The Hilbert Transform in the Classical Setting Circle Packings Discrete Boundary Value Problems Discrete Hilbert Transform Numerical Results of Test Computations Properties of the Discrete Transform Target Groups Lecturers and students of mathematics who are interested in circle packings and/or discrete Riemann-Hilbert problems The Author Dominik Volland currently attends his postgraduate studies in the master's program on computational science and engineering at the Technical University of Munich (TUM)
ISBN: 9783658204570$q(electronic bk.)
Standard No.: 10.1007/978-3-658-20457-0doiSubjects--Topical Terms:
184599
Hilbert transform.
LC Class. No.: QA432
Dewey Class. No.: 515.723
A discrete Hilbert transform with circle packings
LDR
:02448nmm a2200325 a 4500
001
525766
003
DE-He213
005
20171201120820.0
006
m d
007
cr nn 008maaau
008
180918s2017 gw s 0 eng d
020
$a
9783658204570$q(electronic bk.)
020
$a
9783658204563$q(paper)
024
7
$a
10.1007/978-3-658-20457-0
$2
doi
035
$a
978-3-658-20457-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA432
072
7
$a
PBK
$2
bicssc
072
7
$a
MAT034000
$2
bisacsh
082
0 4
$a
515.723
$2
23
090
$a
QA432
$b
.V923 2017
100
1
$a
Volland, Dominik.
$3
798199
245
1 2
$a
A discrete Hilbert transform with circle packings
$h
[electronic resource] /
$c
by Dominik Volland.
260
$a
Wiesbaden :
$b
Springer Fachmedien Wiesbaden :
$b
Imprint: Springer Spektrum,
$c
2017.
300
$a
xi, 102 p. :
$b
ill. (some col.), digital ;
$c
24 cm.
490
1
$a
BestMasters
505
0
$a
Hardy Spaces and Riemann-Hilbert Problems -- The Hilbert Transform in the Classical Setting -- Circle Packings -- Discrete Boundary Value Problems -- Discrete Hilbert Transform -- Numerical Results of Test Computations -- Properties of the Discrete Transform.
520
$a
Dominik Volland studies the construction of a discrete counterpart to the Hilbert transform in the realm of a nonlinear discrete complex analysis given by circle packings. The Hilbert transform is closely related to Riemann-Hilbert problems which have been studied in the framework of circle packings by E. Wegert and co-workers since 2009. The author demonstrates that the discrete Hilbert transform is well-defined in this framework by proving a conjecture on discrete problems formulated by Wegert. Moreover, he illustrates its properties by carefully chosen numerical examples. Basic knowledge of complex analysis and functional analysis is recommended. Contents Hardy Spaces and Riemann-Hilbert Problems The Hilbert Transform in the Classical Setting Circle Packings Discrete Boundary Value Problems Discrete Hilbert Transform Numerical Results of Test Computations Properties of the Discrete Transform Target Groups Lecturers and students of mathematics who are interested in circle packings and/or discrete Riemann-Hilbert problems The Author Dominik Volland currently attends his postgraduate studies in the master's program on computational science and engineering at the Technical University of Munich (TUM)
650
0
$a
Hilbert transform.
$3
184599
650
1 4
$a
Mathematics.
$3
184409
650
2 4
$a
Analysis.
$3
273775
650
2 4
$a
Geometry.
$3
183883
650
2 4
$a
Computational Mathematics and Numerical Analysis.
$3
274020
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
BestMasters.
$3
676593
856
4 0
$u
http://dx.doi.org/10.1007/978-3-658-20457-0
950
$a
Mathematics and Statistics (Springer-11649)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000148943
電子館藏
1圖書
電子書
EB QA432 .V923 2017 2017
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-658-20457-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入