語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Disciplinary convergence in systems ...
~
Madni, Azad M.
Disciplinary convergence in systems engineering research
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Disciplinary convergence in systems engineering researchedited by Azad M. Madni ... [et al.].
其他作者:
Madni, Azad M.
出版者:
Cham :Springer International Publishing :2018.
面頁冊數:
xiv, 1201 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Systems engineering.
電子資源:
http://dx.doi.org/10.1007/978-3-319-62217-0
ISBN:
9783319622170$q(electronic bk.)
Disciplinary convergence in systems engineering research
Disciplinary convergence in systems engineering research
[electronic resource] /edited by Azad M. Madni ... [et al.]. - Cham :Springer International Publishing :2018. - xiv, 1201 p. :ill., digital ;24 cm.
Part 1: Engineered Resilience and Affordability -- Chapter1. Engineering Resilience for Complex Systems -- Chapter2. Early Lifecycle Cost Estimation: Fiscal Stewardship with Engineered Resilient Systems -- Chapter3. Introducing Resilience into Multi-UAV System-of-Systems Network -- Chapter4. Considerations for Engineered Resilience from Examples of Resilient Systems -- Chapter5. High Reliability Imperative for Autonomous Networked Vehicles -- Chapter6. Resilience Concepts for Architecting an Autonomous Military Vehicle System-of-Systems -- Chapter7. A robust portfolio optimization approach using parametric piecewise linear models of system dependencies -- Chapter8. Interactive model trading for resilient systems decisions -- Chapter9. An Empirical Study of Technical Debt in Open-Source Software Systems -- Part 2: System-of-Systems Integration -- Chapter10. Applying the Cyber Security Game to a Point of Sale System -- Chapter11. Resilient Cyber Secure Systems and System of Systems: Implications for the Department of Defense -- Chapter12. Architecting Cyber-Secure, Resilient System-of-Systems -- Chapter13 -- Inference Enterprise Multi-Modeling for Insider Threat Detection Systems -- Chapter14. SoS Explorer: a tool for system-of-systems architecting -- Chapter15. A Principles Framework to Inform Defense SoSE Methodologies -- Chapter16. Complex System Analysis and Verification: A Comprehensive Approach and Case Study -- Chapter17. A model framework for determining dynamic architecture goals in a System-of-Systems -- Chapter18. Understanding how social network analysis can provide insights into emergent networks of systems -- Part 3: Tradespace Visualization and Exploration -- Chapter19. Designing for System Value Sustainment using Interactive Epoch-Era Analysis: A Case Study from Commercial Offshore Ships -- Chapter20. Simulation-Based Air Mission Evaluation with Bayesian Threat Assessment for Opposing Forces -- Chapter21. Tradespace Exploration - Promise and Limits -- Part 4: Model-Based Systems Engineering and Integration -- Chapter22. Model-Based Systems Engineering: Motivation, Current Status, and Needed Advances -- Chapter23. High Fidelity Simulation Surrogate Models For Systems Engineering -- Chapter24. Discovering toxic policies using MBSE constructs -- Chapter25. Model-based Engineering: Analysis of Alternatives for Optical Satellite Observation -- Chapter26. Model-Based Approach for Engineering Resilient System-of-Systems: Application to Autonomous Vehicle Networks -- Chapter27. Validation and Verification of MBSE-compliant CubeSat Reference Model -- Chapter28. An Architecture Profile for Human System Integration -- Chapter29. Formal Methods in Resilient Systems Design: Application to Multi-UAV System-of-Systems Control -- Chapter30. Improving Lifecycle Product Data Management (LPDM) Within the US Army Research, Development and Engineering Command (RDECOM) -- Chapter31. Verification and validation of behavior models using lightweight formal methods -- Chapter32. Categorical foundations for systems engineering -- Part s5: System Architecture and Complexity -- Chapter33. A facilitated expert-based approach to architecting "prizeable" complex systems -- Chapter34. A Framework for Measuring the Fit Between Product and Organizational Architectures -- Chapter35. Developing an Effective Optical Satellite Communications Architecture -- Chapter36. Preference Modeling for Government-Owned Large-Scale Complex Engineered Systems - A Satellite Case Study -- Chapter37. System safety data network: Architecture and Blueprint -- Chapter38. Scalability in self-organizing systems: an experimental case study on foraging systems -- Chapter39. Evaluation of cross-project multitasking in software projects -- Chapter40. Cultural Worldviews on an Aerospace Standards Committee: a Preliminary Analysis -- Chapter41. The Flexibility of Generic Architectures: Lessons from the Human Nervous System -- Chapter42. Multi-objective optimization of Geosynchronous Earth Orbit space situational awareness system architectures -- Chapter43. System user pathways to change -- Part 6: Systems Science, Systems Thinking and Complexity Management -- Chapter44. Threshold Metric for Mapping Natural Language Relationships among Objects -- Chapter45. On the Nature of Systems Thinking and Systems Science: Similarities, Differences, Potential Synergies -- Chapter46. Three General Systems Principles and their Derivation: Insights from the Philosophy of Science Applied to Systems Concepts -- Chapter47. Systems Engineering Pathology: Leveraging Science to Characterize Dysfunction -- Chapter48. Using the PICARD theory as a tool to improve systems thinking ability -- Chapter49. Agency and causal factors in social system behavior: Advancing human systems engineering with general system theory -- Chapter50. Classifying Emergent Behavior to Reveal Design Patterns -- Chapter51. Collective behaviors: Systemic view of distinct forces in a new framework -- Chapter52. Generational Evolution in Complex Engineered Systems -- Chapter53. Evaluating how internal health assessment can trigger anticipatory intervention as part of a resilient system -- Chapter54. An Analysis of Individual Systems Thinking Elements -- Part 7: Systems Engineering and Decision Science -- Chapter55. Using Bayesian Networks to Validate Technology Readiness Assessments of Systems -- Chapter56. Adaptive and Automated Reasoning for Autonomous System Resilience in Uncertain Worlds -- Chapter57. Model-centric decision-making: exploring decision-maker trust and perception of models -- Chapter58. Implementing Value-Driven Design in Modelica for a racing solar boat -- Chapter59. A game theoretical perspective on incentivizing collaboration in system design -- Part 8: Systems Engineering and Smart Manufacturing -- Chapter60. Towards a Diagnostic and Prognostic Method for Knowledge-Driven Decision Making in Smart Manufacturing Technologies -- Chapter61. Patterns for modeling operational control of discrete event logistics systems (DELS) -- Chapter62. Towards Automated Generation of Multimodal Assembly Instructions for Humans Operators -- Part 9: Systems Engineering Applications -- Chapter63. A Game Theory Perspective on Requirement-Based Engineering Design -- Chapter64. Structural Rules for Sound Business Process Implemented by UML Activity Diagram -- Chapter65. A Value Driven Approach to Capture Unintended Consequences Impacting Mission Success -- Chapter66. Survey of Four Uncertainty Quantifications Methods in Systems Engineering -- Chapter67. Using systems engineering to create a survivable communications system that will operate in the presence of "Black Sky" hazards -- Chapter68. Interdependency effects on the electricity grid following a "Black Sky" hazard -- Chapter69. Black Sky hazards: Systems engineering as a unique tool to prevent national catastrophe -- Chapter70. Agile Fit Check Framework for Government Acquisition Programs -- Chapter71. The Agile Systems Framework: Enterprise Content Management Case -- Chapter72. Quantifying the ilities: a literature review of robustness, interoperabilisty, and agility -- Chapter73. A Systems Integration Framework for Interdisciplinary Black Sky Operations -- Part 10: Systems Engineering Education -- Chapter74. An architecture analysis of a cyber secondary school as a system of systems -- Chapter75. Systems Engineering - making people talk -- Chapter76. Development of a project-oriented and transnational master course for training the engineering competencies -- Chapter77. The Role of Decision Analysis in Industrial and Systems Engineering Education -- Chapter78. Strengthening systems engineering leadership curricula using competency-based assessment -- Chapter79. Integrating systems engineering students in capstones: a multi-spectrum characterization of interdisciplinary capstones -- Chapter80. SEEA: Accelerated Learning and Learning Assessment for Systems Engineering Education -- Chapter81. Future Systems Engineering Research Directions.
The theme of this volume on systems engineering research is disciplinary convergence: bringing together concepts, thinking, approaches, and technologies from diverse disciplines to solve complex problems. Papers presented at the Conference on Systems Engineering Research (CSER), March 23-25, 2017 at Redondo Beach, CA, are included in this volume. This collection provides researchers in academia, industry, and government forward-looking research from across the globe, written by renowned academic, industry and government researchers.
ISBN: 9783319622170$q(electronic bk.)
Standard No.: 10.1007/978-3-319-62217-0doiSubjects--Topical Terms:
182491
Systems engineering.
LC Class. No.: TA168
Dewey Class. No.: 620.001171
Disciplinary convergence in systems engineering research
LDR
:09549nmm a2200325 a 4500
001
529286
003
DE-He213
005
20180720101409.0
006
m d
007
cr nn 008maaau
008
181105s2018 gw s 0 eng d
020
$a
9783319622170$q(electronic bk.)
020
$a
9783319622163$q(paper)
024
7
$a
10.1007/978-3-319-62217-0
$2
doi
035
$a
978-3-319-62217-0
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TA168
072
7
$a
TBC
$2
bicssc
072
7
$a
KJMV
$2
bicssc
072
7
$a
TEC000000
$2
bisacsh
082
0 4
$a
620.001171
$2
23
090
$a
TA168
$b
.D611 2018
245
0 0
$a
Disciplinary convergence in systems engineering research
$h
[electronic resource] /
$c
edited by Azad M. Madni ... [et al.].
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
xiv, 1201 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
Part 1: Engineered Resilience and Affordability -- Chapter1. Engineering Resilience for Complex Systems -- Chapter2. Early Lifecycle Cost Estimation: Fiscal Stewardship with Engineered Resilient Systems -- Chapter3. Introducing Resilience into Multi-UAV System-of-Systems Network -- Chapter4. Considerations for Engineered Resilience from Examples of Resilient Systems -- Chapter5. High Reliability Imperative for Autonomous Networked Vehicles -- Chapter6. Resilience Concepts for Architecting an Autonomous Military Vehicle System-of-Systems -- Chapter7. A robust portfolio optimization approach using parametric piecewise linear models of system dependencies -- Chapter8. Interactive model trading for resilient systems decisions -- Chapter9. An Empirical Study of Technical Debt in Open-Source Software Systems -- Part 2: System-of-Systems Integration -- Chapter10. Applying the Cyber Security Game to a Point of Sale System -- Chapter11. Resilient Cyber Secure Systems and System of Systems: Implications for the Department of Defense -- Chapter12. Architecting Cyber-Secure, Resilient System-of-Systems -- Chapter13 -- Inference Enterprise Multi-Modeling for Insider Threat Detection Systems -- Chapter14. SoS Explorer: a tool for system-of-systems architecting -- Chapter15. A Principles Framework to Inform Defense SoSE Methodologies -- Chapter16. Complex System Analysis and Verification: A Comprehensive Approach and Case Study -- Chapter17. A model framework for determining dynamic architecture goals in a System-of-Systems -- Chapter18. Understanding how social network analysis can provide insights into emergent networks of systems -- Part 3: Tradespace Visualization and Exploration -- Chapter19. Designing for System Value Sustainment using Interactive Epoch-Era Analysis: A Case Study from Commercial Offshore Ships -- Chapter20. Simulation-Based Air Mission Evaluation with Bayesian Threat Assessment for Opposing Forces -- Chapter21. Tradespace Exploration - Promise and Limits -- Part 4: Model-Based Systems Engineering and Integration -- Chapter22. Model-Based Systems Engineering: Motivation, Current Status, and Needed Advances -- Chapter23. High Fidelity Simulation Surrogate Models For Systems Engineering -- Chapter24. Discovering toxic policies using MBSE constructs -- Chapter25. Model-based Engineering: Analysis of Alternatives for Optical Satellite Observation -- Chapter26. Model-Based Approach for Engineering Resilient System-of-Systems: Application to Autonomous Vehicle Networks -- Chapter27. Validation and Verification of MBSE-compliant CubeSat Reference Model -- Chapter28. An Architecture Profile for Human System Integration -- Chapter29. Formal Methods in Resilient Systems Design: Application to Multi-UAV System-of-Systems Control -- Chapter30. Improving Lifecycle Product Data Management (LPDM) Within the US Army Research, Development and Engineering Command (RDECOM) -- Chapter31. Verification and validation of behavior models using lightweight formal methods -- Chapter32. Categorical foundations for systems engineering -- Part s5: System Architecture and Complexity -- Chapter33. A facilitated expert-based approach to architecting "prizeable" complex systems -- Chapter34. A Framework for Measuring the Fit Between Product and Organizational Architectures -- Chapter35. Developing an Effective Optical Satellite Communications Architecture -- Chapter36. Preference Modeling for Government-Owned Large-Scale Complex Engineered Systems - A Satellite Case Study -- Chapter37. System safety data network: Architecture and Blueprint -- Chapter38. Scalability in self-organizing systems: an experimental case study on foraging systems -- Chapter39. Evaluation of cross-project multitasking in software projects -- Chapter40. Cultural Worldviews on an Aerospace Standards Committee: a Preliminary Analysis -- Chapter41. The Flexibility of Generic Architectures: Lessons from the Human Nervous System -- Chapter42. Multi-objective optimization of Geosynchronous Earth Orbit space situational awareness system architectures -- Chapter43. System user pathways to change -- Part 6: Systems Science, Systems Thinking and Complexity Management -- Chapter44. Threshold Metric for Mapping Natural Language Relationships among Objects -- Chapter45. On the Nature of Systems Thinking and Systems Science: Similarities, Differences, Potential Synergies -- Chapter46. Three General Systems Principles and their Derivation: Insights from the Philosophy of Science Applied to Systems Concepts -- Chapter47. Systems Engineering Pathology: Leveraging Science to Characterize Dysfunction -- Chapter48. Using the PICARD theory as a tool to improve systems thinking ability -- Chapter49. Agency and causal factors in social system behavior: Advancing human systems engineering with general system theory -- Chapter50. Classifying Emergent Behavior to Reveal Design Patterns -- Chapter51. Collective behaviors: Systemic view of distinct forces in a new framework -- Chapter52. Generational Evolution in Complex Engineered Systems -- Chapter53. Evaluating how internal health assessment can trigger anticipatory intervention as part of a resilient system -- Chapter54. An Analysis of Individual Systems Thinking Elements -- Part 7: Systems Engineering and Decision Science -- Chapter55. Using Bayesian Networks to Validate Technology Readiness Assessments of Systems -- Chapter56. Adaptive and Automated Reasoning for Autonomous System Resilience in Uncertain Worlds -- Chapter57. Model-centric decision-making: exploring decision-maker trust and perception of models -- Chapter58. Implementing Value-Driven Design in Modelica for a racing solar boat -- Chapter59. A game theoretical perspective on incentivizing collaboration in system design -- Part 8: Systems Engineering and Smart Manufacturing -- Chapter60. Towards a Diagnostic and Prognostic Method for Knowledge-Driven Decision Making in Smart Manufacturing Technologies -- Chapter61. Patterns for modeling operational control of discrete event logistics systems (DELS) -- Chapter62. Towards Automated Generation of Multimodal Assembly Instructions for Humans Operators -- Part 9: Systems Engineering Applications -- Chapter63. A Game Theory Perspective on Requirement-Based Engineering Design -- Chapter64. Structural Rules for Sound Business Process Implemented by UML Activity Diagram -- Chapter65. A Value Driven Approach to Capture Unintended Consequences Impacting Mission Success -- Chapter66. Survey of Four Uncertainty Quantifications Methods in Systems Engineering -- Chapter67. Using systems engineering to create a survivable communications system that will operate in the presence of "Black Sky" hazards -- Chapter68. Interdependency effects on the electricity grid following a "Black Sky" hazard -- Chapter69. Black Sky hazards: Systems engineering as a unique tool to prevent national catastrophe -- Chapter70. Agile Fit Check Framework for Government Acquisition Programs -- Chapter71. The Agile Systems Framework: Enterprise Content Management Case -- Chapter72. Quantifying the ilities: a literature review of robustness, interoperabilisty, and agility -- Chapter73. A Systems Integration Framework for Interdisciplinary Black Sky Operations -- Part 10: Systems Engineering Education -- Chapter74. An architecture analysis of a cyber secondary school as a system of systems -- Chapter75. Systems Engineering - making people talk -- Chapter76. Development of a project-oriented and transnational master course for training the engineering competencies -- Chapter77. The Role of Decision Analysis in Industrial and Systems Engineering Education -- Chapter78. Strengthening systems engineering leadership curricula using competency-based assessment -- Chapter79. Integrating systems engineering students in capstones: a multi-spectrum characterization of interdisciplinary capstones -- Chapter80. SEEA: Accelerated Learning and Learning Assessment for Systems Engineering Education -- Chapter81. Future Systems Engineering Research Directions.
520
$a
The theme of this volume on systems engineering research is disciplinary convergence: bringing together concepts, thinking, approaches, and technologies from diverse disciplines to solve complex problems. Papers presented at the Conference on Systems Engineering Research (CSER), March 23-25, 2017 at Redondo Beach, CA, are included in this volume. This collection provides researchers in academia, industry, and government forward-looking research from across the globe, written by renowned academic, industry and government researchers.
650
0
$a
Systems engineering.
$3
182491
650
0
$a
Systems integration.
$3
717883
650
0
$a
Automatic control.
$3
182078
650
0
$a
Engineering economy.
$3
200120
650
1 4
$a
Engineering.
$3
210888
650
2 4
$a
Engineering Economics, Organization, Logistics, Marketing.
$3
274009
650
2 4
$a
Control, Robotics, Mechatronics.
$3
339147
650
2 4
$a
Vibration, Dynamical Systems, Control.
$3
274667
650
2 4
$a
Systems Theory, Control.
$3
274654
700
1
$a
Madni, Azad M.
$3
771866
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-62217-0
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000150973
電子館藏
1圖書
電子書
EB TA168 .D611 2018 2018
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-62217-0
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入