語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Finite element conceptsa closed-form...
~
Dasgupta, Gautam.
Finite element conceptsa closed-form algebraic development /
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Finite element conceptsby Gautam Dasgupta.
其他題名:
a closed-form algebraic development /
作者:
Dasgupta, Gautam.
出版者:
New York, NY :Springer New York :2018.
面頁冊數:
xxxvi, 333 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Finite element method.
電子資源:
http://dx.doi.org/10.1007/978-1-4939-7423-8
ISBN:
9781493974238$q(electronic bk.)
Finite element conceptsa closed-form algebraic development /
Dasgupta, Gautam.
Finite element concepts
a closed-form algebraic development /[electronic resource] :by Gautam Dasgupta. - New York, NY :Springer New York :2018. - xxxvi, 333 p. :ill., digital ;24 cm.
1. Bar -- 2. Trusses -- 3. 2-D Llinear Interpolation -- 4. Triangular Elements -- 5. Taig's Convex Quadrilateral Elements -- 6. Irons patch test -- 7. Eight DOFs -- 8. Incompressibility -- 9. Conclusions.
This text presents a highly original treatment of the fundamentals of FEM, developed using computer algebra, based on undergraduate-level engineering mathematics and the mechanics of solids. The book is divided into two distinct parts of nine chapters and seven appendices. The first chapter reviews the energy concepts in structural mechanics with bar problems, which is continued in the next chapter for truss analysis using Mathematica programs. The Courant and Clough triangular elements for scalar potentials and linear elasticity are covered in chapters three and four, followed by four-node elements. Chapters five and six describe Taig's isoparametric interpolants and Iron's patch test. Rayleigh vector modes, which satisfy point-wise equilibrium, are elaborated on in chapter seven along with successful patch tests in the physical (x,y) Cartesian frame. Chapter eight explains point-wise incompressibility and employs (Moore-Penrose) inversion of rectangular matrices. The final chapter analyzes patch-tests in all directions and introduces five-node elements for linear stresses. Curved boundaries and higher order stresses are addressed in closed algebraic form. Appendices give a short introduction to Mathematica, followed by truss analysis using symbolic codes that could be used in all FEM problems to assemble element matrices and solve for all unknowns. All Mathematica codes for theoretical formulations and graphics are included with extensive numerical examples.
ISBN: 9781493974238$q(electronic bk.)
Standard No.: 10.1007/978-1-4939-7423-8doiSubjects--Topical Terms:
184533
Finite element method.
LC Class. No.: TA347.F5
Dewey Class. No.: 518.25
Finite element conceptsa closed-form algebraic development /
LDR
:02641nmm a2200313 a 4500
001
529928
003
DE-He213
005
20180807165208.0
006
m d
007
cr nn 008maaau
008
181107s2018 nyu s 0 eng d
020
$a
9781493974238$q(electronic bk.)
020
$a
9781493974214$q(paper)
024
7
$a
10.1007/978-1-4939-7423-8
$2
doi
035
$a
978-1-4939-7423-8
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
TA347.F5
072
7
$a
TBJ
$2
bicssc
072
7
$a
MAT003000
$2
bisacsh
082
0 4
$a
518.25
$2
23
090
$a
TA347.F5
$b
D229 2018
100
1
$a
Dasgupta, Gautam.
$3
803416
245
1 0
$a
Finite element concepts
$h
[electronic resource] :
$b
a closed-form algebraic development /
$c
by Gautam Dasgupta.
260
$a
New York, NY :
$b
Springer New York :
$b
Imprint: Springer,
$c
2018.
300
$a
xxxvi, 333 p. :
$b
ill., digital ;
$c
24 cm.
505
0
$a
1. Bar -- 2. Trusses -- 3. 2-D Llinear Interpolation -- 4. Triangular Elements -- 5. Taig's Convex Quadrilateral Elements -- 6. Irons patch test -- 7. Eight DOFs -- 8. Incompressibility -- 9. Conclusions.
520
$a
This text presents a highly original treatment of the fundamentals of FEM, developed using computer algebra, based on undergraduate-level engineering mathematics and the mechanics of solids. The book is divided into two distinct parts of nine chapters and seven appendices. The first chapter reviews the energy concepts in structural mechanics with bar problems, which is continued in the next chapter for truss analysis using Mathematica programs. The Courant and Clough triangular elements for scalar potentials and linear elasticity are covered in chapters three and four, followed by four-node elements. Chapters five and six describe Taig's isoparametric interpolants and Iron's patch test. Rayleigh vector modes, which satisfy point-wise equilibrium, are elaborated on in chapter seven along with successful patch tests in the physical (x,y) Cartesian frame. Chapter eight explains point-wise incompressibility and employs (Moore-Penrose) inversion of rectangular matrices. The final chapter analyzes patch-tests in all directions and introduces five-node elements for linear stresses. Curved boundaries and higher order stresses are addressed in closed algebraic form. Appendices give a short introduction to Mathematica, followed by truss analysis using symbolic codes that could be used in all FEM problems to assemble element matrices and solve for all unknowns. All Mathematica codes for theoretical formulations and graphics are included with extensive numerical examples.
650
0
$a
Finite element method.
$3
184533
650
1 4
$a
Engineering.
$3
210888
650
2 4
$a
Mathematical and Computational Engineering.
$3
775095
650
2 4
$a
Partial Differential Equations.
$3
274075
650
2 4
$a
Computational Science and Engineering.
$3
274685
650
2 4
$a
Mechanical Engineering.
$3
273894
650
2 4
$a
Civil Engineering.
$3
273741
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
856
4 0
$u
http://dx.doi.org/10.1007/978-1-4939-7423-8
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000151570
電子館藏
1圖書
電子書
EB TA347.F5 D229 2018 2018
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-1-4939-7423-8
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入