語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Nonparametric kernel density estimat...
~
Gramacki, Artur.
Nonparametric kernel density estimation and its computational aspects
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Nonparametric kernel density estimation and its computational aspectsby Artur Gramacki.
作者:
Gramacki, Artur.
出版者:
Cham :Springer International Publishing :2018.
面頁冊數:
xxix, 176 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Kernel functions.
電子資源:
http://dx.doi.org/10.1007/978-3-319-71688-6
ISBN:
9783319716886$q(electronic bk.)
Nonparametric kernel density estimation and its computational aspects
Gramacki, Artur.
Nonparametric kernel density estimation and its computational aspects
[electronic resource] /by Artur Gramacki. - Cham :Springer International Publishing :2018. - xxix, 176 p. :ill., digital ;24 cm. - Studies in big data,v.372197-6503 ;. - Studies in big data ;v.1..
This book describes computational problems related to kernel density estimation (KDE) - one of the most important and widely used data smoothing techniques. A very detailed description of novel FFT-based algorithms for both KDE computations and bandwidth selection are presented. The theory of KDE appears to have matured and is now well developed and understood. However, there is not much progress observed in terms of performance improvements. This book is an attempt to remedy this. The book primarily addresses researchers and advanced graduate or postgraduate students who are interested in KDE and its computational aspects. The book contains both some background and much more sophisticated material, hence also more experienced researchers in the KDE area may find it interesting. The presented material is richly illustrated with many numerical examples using both artificial and real datasets. Also, a number of practical applications related to KDE are presented.
ISBN: 9783319716886$q(electronic bk.)
Standard No.: 10.1007/978-3-319-71688-6doiSubjects--Topical Terms:
214209
Kernel functions.
LC Class. No.: QA353.K47
Dewey Class. No.: 515.9
Nonparametric kernel density estimation and its computational aspects
LDR
:01962nmm a2200313 a 4500
001
529969
003
DE-He213
005
20180807133229.0
006
m d
007
cr nn 008maaau
008
181107s2018 gw s 0 eng d
020
$a
9783319716886$q(electronic bk.)
020
$a
9783319716879$q(paper)
024
7
$a
10.1007/978-3-319-71688-6
$2
doi
035
$a
978-3-319-71688-6
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA353.K47
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
515.9
$2
23
090
$a
QA353.K47
$b
G745 2018
100
1
$a
Gramacki, Artur.
$3
803468
245
1 0
$a
Nonparametric kernel density estimation and its computational aspects
$h
[electronic resource] /
$c
by Artur Gramacki.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
xxix, 176 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Studies in big data,
$x
2197-6503 ;
$v
v.37
520
$a
This book describes computational problems related to kernel density estimation (KDE) - one of the most important and widely used data smoothing techniques. A very detailed description of novel FFT-based algorithms for both KDE computations and bandwidth selection are presented. The theory of KDE appears to have matured and is now well developed and understood. However, there is not much progress observed in terms of performance improvements. This book is an attempt to remedy this. The book primarily addresses researchers and advanced graduate or postgraduate students who are interested in KDE and its computational aspects. The book contains both some background and much more sophisticated material, hence also more experienced researchers in the KDE area may find it interesting. The presented material is richly illustrated with many numerical examples using both artificial and real datasets. Also, a number of practical applications related to KDE are presented.
650
0
$a
Kernel functions.
$3
214209
650
0
$a
Digital filters (Mathematics)
$3
199348
650
1 4
$a
Engineering.
$3
210888
650
2 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
252959
650
2 4
$a
Big Data.
$3
760530
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Studies in big data ;
$v
v.1.
$3
675357
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-71688-6
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000151611
電子館藏
1圖書
電子書
EB QA353.K47 G745 2018 2018
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-71688-6
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入