語系:
繁體中文
English
說明(常見問題)
圖資館首頁
登入
回首頁
切換:
標籤
|
MARC模式
|
ISBD
Optimized cloud based scheduling
~
Leong, John A.
Optimized cloud based scheduling
紀錄類型:
書目-電子資源 : Monograph/item
正題名/作者:
Optimized cloud based schedulingby Rong Kun Jason Tan, John A. Leong, Amandeep S. Sidhu.
作者:
Tan, Rong Kun Jason.
其他作者:
Leong, John A.
出版者:
Cham :Springer International Publishing :2018.
面頁冊數:
xiii, 99 p. :ill., digital ;24 cm.
Contained By:
Springer eBooks
標題:
Cloud computing.
電子資源:
http://dx.doi.org/10.1007/978-3-319-73214-5
ISBN:
9783319732145$q(electronic bk.)
Optimized cloud based scheduling
Tan, Rong Kun Jason.
Optimized cloud based scheduling
[electronic resource] /by Rong Kun Jason Tan, John A. Leong, Amandeep S. Sidhu. - Cham :Springer International Publishing :2018. - xiii, 99 p. :ill., digital ;24 cm. - Studies in computational intelligence,v.7591860-949X ;. - Studies in computational intelligence ;v. 216..
Introduction -- Background -- Benchmarking -- Computation of Large Datasets -- Optimized Online Scheduling Algorithms.
This book presents an improved design for service provisioning and allocation models that are validated through running genome sequence assembly tasks in a hybrid cloud environment. It proposes approaches for addressing scheduling and performance issues in big data analytics and showcases new algorithms for hybrid cloud scheduling. Scientific sectors such as bioinformatics, astronomy, high-energy physics, and Earth science are generating a tremendous flow of data, commonly known as big data. In the context of growing demand for big data analytics, cloud computing offers an ideal platform for processing big data tasks due to its flexible scalability and adaptability. However, there are numerous problems associated with the current service provisioning and allocation models, such as inefficient scheduling algorithms, overloaded memory overheads, excessive node delays and improper error handling of tasks, all of which need to be addressed to enhance the performance of big data analytics.
ISBN: 9783319732145$q(electronic bk.)
Standard No.: 10.1007/978-3-319-73214-5doiSubjects--Topical Terms:
378527
Cloud computing.
LC Class. No.: QA76.585
Dewey Class. No.: 004.6782
Optimized cloud based scheduling
LDR
:02132nmm a2200325 a 4500
001
531861
003
DE-He213
005
20180224102946.0
006
m d
007
cr nn 008maaau
008
181113s2018 gw s 0 eng d
020
$a
9783319732145$q(electronic bk.)
020
$a
9783319732121$q(paper)
024
7
$a
10.1007/978-3-319-73214-5
$2
doi
035
$a
978-3-319-73214-5
040
$a
GP
$c
GP
041
0
$a
eng
050
4
$a
QA76.585
072
7
$a
UYQ
$2
bicssc
072
7
$a
COM004000
$2
bisacsh
082
0 4
$a
004.6782
$2
23
090
$a
QA76.585
$b
.T161 2018
100
1
$a
Tan, Rong Kun Jason.
$3
806541
245
1 0
$a
Optimized cloud based scheduling
$h
[electronic resource] /
$c
by Rong Kun Jason Tan, John A. Leong, Amandeep S. Sidhu.
260
$a
Cham :
$b
Springer International Publishing :
$b
Imprint: Springer,
$c
2018.
300
$a
xiii, 99 p. :
$b
ill., digital ;
$c
24 cm.
490
1
$a
Studies in computational intelligence,
$x
1860-949X ;
$v
v.759
505
0
$a
Introduction -- Background -- Benchmarking -- Computation of Large Datasets -- Optimized Online Scheduling Algorithms.
520
$a
This book presents an improved design for service provisioning and allocation models that are validated through running genome sequence assembly tasks in a hybrid cloud environment. It proposes approaches for addressing scheduling and performance issues in big data analytics and showcases new algorithms for hybrid cloud scheduling. Scientific sectors such as bioinformatics, astronomy, high-energy physics, and Earth science are generating a tremendous flow of data, commonly known as big data. In the context of growing demand for big data analytics, cloud computing offers an ideal platform for processing big data tasks due to its flexible scalability and adaptability. However, there are numerous problems associated with the current service provisioning and allocation models, such as inefficient scheduling algorithms, overloaded memory overheads, excessive node delays and improper error handling of tasks, all of which need to be addressed to enhance the performance of big data analytics.
650
0
$a
Cloud computing.
$3
378527
650
0
$a
High performance computing.
$3
211079
650
1 4
$a
Engineering.
$3
210888
650
2 4
$a
Computational Intelligence.
$3
338479
650
2 4
$a
Artificial Intelligence (incl. Robotics)
$3
252959
650
2 4
$a
Information Systems Applications (incl. Internet)
$3
530743
700
1
$a
Leong, John A.
$3
806542
700
1
$a
Sidhu, Amandeep S.
$3
375720
710
2
$a
SpringerLink (Online service)
$3
273601
773
0
$t
Springer eBooks
830
0
$a
Studies in computational intelligence ;
$v
v. 216.
$3
380871
856
4 0
$u
http://dx.doi.org/10.1007/978-3-319-73214-5
950
$a
Engineering (Springer-11647)
筆 0 讀者評論
全部
電子館藏
館藏
1 筆 • 頁數 1 •
1
條碼號
館藏地
館藏流通類別
資料類型
索書號
使用類型
借閱狀態
預約狀態
備註欄
附件
000000152742
電子館藏
1圖書
電子書
EB QA76.585 .T161 2018 2018
一般使用(Normal)
在架
0
1 筆 • 頁數 1 •
1
多媒體
多媒體檔案
http://dx.doi.org/10.1007/978-3-319-73214-5
評論
新增評論
分享你的心得
Export
取書館別
處理中
...
變更密碼
登入